【脑电】蒙太奇标准 montage

本文详细介绍了脑电类型的两种主要形式——自发脑电和诱发脑电,包括事件相关电位和稳态视觉诱发电位。此外,文章还阐述了大脑功能区划分和10-20系统的电极定位,以及脑电图中的单极与双极蒙太奇技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、脑电类型

1、自发脑电

大脑在日常活动中自然产生的脑电信号,在头皮测量时,振幅约为100μV,在大脑表面测量时,约为12mV,信号的频率在150Hz。

2、诱发脑电

诱发脑电是大脑在接受到刺激时产生的脑电信号,刺激可以是声音刺激,图像刺激,视频刺激,电刺激等等,如稳态视觉诱发电位(SSVEP)。

2.1事件相关电位(event-related potential,ERP):

在物理或者心理事件发生时,脑电信号在时间上的波动。

2.2稳态视觉诱发电位(Steady state visually evoked potential, SSVEP):

当视网膜接收到 3.5Hz 至 75Hz 的视觉刺激,大脑会产生和视觉刺激相同频率或倍数频率的电气活动。

二、脑功能区

在这里插入图片描述

根据空间位置,大脑皮层被分为几个叶。每个叶是空间上连通的一部分皮层。以下列出的是这些分区的名称及目前学术界所认为的主要功能:

额叶:高级认知功能,比如学习、语言、决策、抽象思维、情绪等,自主运动的控制(参见运动皮层)。
顶叶:躯体感觉(参见体感皮层),空间信息处理,视觉信息和体感信息的整合。
颞叶:听觉(参见听觉皮层),嗅觉,高级视觉功能(例如物体识别),分辨左右,长期记忆。
枕叶:视觉处理(参见视觉皮层)
边缘系统:奖励学习和情感处理。

三、10-20系统

脑电帽在使用的过程当中需要确定电极在大脑的位置,其中最常用的就是国际10-20系统(以及在此基础之上开发的10-10系统)。
“10”和“20”指的是相邻电极之间的实际距离是头骨前后或左右总距离的10% 或20% 。

1、标记

电极有特定的字母和数字进行标记,其中
F为额叶(Frontal)
T为颞叶(Temporal)
P为顶叶(Parietal)
O为枕叶(Occipital)
C为中央区(Central,大脑没有这个区,是为了方便识别更为典型的脑电活动,如运动相关的通常在C3和C4)
“z”表示放置在中线上的电极,偶数表示大脑右侧的电极,奇数表示放置在大脑左侧的电极。

Fz和Cz常用于电极的接地或者共同参考点,A1和A2长用于对侧参考。

在10-20的基础之上,在10%的位置上进行电极的扩展,便得到10-10系统。

在这里插入图片描述
分布图:
在这里插入图片描述

2、蒙太奇 montage

蒙太奇(Montages)是脑电图衍生或通道的合理、有序的排列,创建这些通道是为了显示整个头部的活动,并提供偏侧化和局部化的信息。
最常见的是bipolar montages 和 referential montages 用于常规的脑电图记录。

2.1 单极蒙太奇
(1)典型数据集

TUH

(2)介绍

指在电极上记录的电位(我们称之为原始信号)与参考节点(例如连接到左耳的电极)之间的差异(差分电压记录信号)。

在TUH数据集中,使用了**(1)平均参考(AR)和(2)链接耳朵参考(LE)
AR蒙太奇使用一定数量电极的平均值作为参考。LE montage使用引线适配器连接左右耳,提供更稳定的参考点。
在TUEG中,LE
AR**单极蒙太奇被分为四类:01_tcp_AR,02_tcp_LE,03_tcp_AR_a和04_tcp_e_a。每个蒙太奇都是基于所包含的信道类型。
标记为01_tcp_ar的蒙太奇对电极使用ar参考方法。
蒙太奇02_tcpüle分类使用le montage格式。
单极蒙太奇被标记为03_tcp_ar_a和04_tcp_le_a,它们分别使用ar和le格式,但只收集了20个频道。对于最后两个亚组,耳道被排除在外(电极A1和A2)。

2.2 双极蒙太奇
(1)典型数据集
  • 典型数据集:CHBMIT
  • 以chb01为例,导联信息如下表所示(channel 23和channel 15 导联重复,在实际使用中需要被剔除)
(2)介绍

差分电压(单极蒙太奇)用于降低噪声和增强感兴趣的事件。当神经科医生查看数据时,他们通常会采用双极性蒙太奇来去除信号噪声,并改善EEG信号的空间信息解释。
这个蒙太奇使用的信号对应于两个相邻电极(例如FP1-F7,T3-C3),在鼻内/纵向,或横穿头皮(左至右)。还有很多其他蒙太奇在使用。然而,到目前为止,TCP双相蒙太奇神经学家使用最多的。

### 使用 Python 的 MNE 库进行数据预处理 #### 导入必要的库 为了使用 `MNE` 工具包来处理 EEG 数据,首先需要安装并导入该库以及其他辅助库。 ```python import mne import numpy as np from matplotlib import pyplot as plt ``` #### 加载原始数据文件 通过指定路径读取 `.fif`, `.edf`, 或其他支持格式的数据文件。这里假设有一个名为 'sample_data.fif' 的文件存在当前工作目录下[^1]。 ```python raw = mne.io.read_raw_fif('sample_data.fif', preload=True, verbose=False) print(raw.info) # 打印基本信息 ``` #### 设置蒙太奇Montage) 设置极位置对于后续的空间滤波器应用至关重要。可以通过加载标准模板或自定义坐标系完成这一步骤[^2]。 ```python montage = mne.channels.make_standard_montage('standard_1020') raw.set_montage(montage) ``` #### 可视化检查数据质量 绘制时间序列图可以帮助识别明显的伪影或其他异常情况。 ```python raw.plot(n_channels=20, duration=20, show_scrollbars=False); plt.show() ``` #### 去除噪声成分 独立分量分析 (ICA) 是一种常用的技术用于分离混杂信号源,如眨眼引起的波动等。 ```python ica = mne.preprocessing.ICA(n_components=20, random_state=97, max_iter=800) ica.fit(raw) # 查看各组件贡献度并与实际记录对比找出坏通道对应的ICs ica.plot_sources(raw); # 移除选定的 IC 组件 ica.exclude = [idx for idx in range(ica.n_components_) if ... ] # 用户需手动挑选要排除的索引列表 raw_cleaned = ica.apply(raw.copy()) ``` #### 裁剪和重采样 根据实验设计需求调整数据的时间范围以及频率分辨率。 ```python tmin, tmax = 0., 60. sfreq_new = 256. raw.crop(tmin=tmin, tmax=tmax).resample(sfreq_new) ``` #### 创建事件标记 如果原数据集中未包含触发信息,则可以根据特定条件生成相应的标签向量以便于后期分类任务中的同步操作。 ```python events = mne.find_events(raw, stim_channel='STI 014') event_id = {'Auditory/Left': 1, 'Auditory/Right': 2} epochs = mne.Epochs(raw, events, event_id=event_id, baseline=(None, 0), picks=['eeg'], preload=True) ``` 以上流程展示了利用 Python 中的 MNE 库执行典型 EEG 数据前处理工作的主要环节[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值