(NCR)NeurIPS-2021-learning-with-noisy-correspondence-for-cross-modal-matching-Paper

文章介绍了一种名为NCR的方法,旨在解决识别FalsePositive的问题。它使用A/B网络进行预训练,然后依据后验概率w将数据分为clean和noisy两部分。接着进行标签校正,并利用soft-margin策略训练网络,以增强TruePositive与FalsePositive的区分度。实验结果显示该方法有效改善了数据分类的准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.背景

在这里插入图片描述
要解决的问题:识别False Positive,并尽可能找到最佳配对

2.网络

在这里插入图片描述
这是原文网络,之后会拆开讲

3.流程

在这里插入图片描述
左边是文章原图,右边是我自己补充了一些细节后的图
原图中用S表示数据集,由于在文中S也表示相似度,所以我改成D了,方便讲解

3-0.数据集与A/B网络 && 3-1.Warmup:A/B网络预训练

在这里插入图片描述

  • 数据集:在这里插入图片描述
    (noisy correspondence 指的是y=1但是实际是false positive对)
  • A/B网络:包含f,g,S三个网络。f/g将I/T embeding到同一维度,S网络计算(f(I),g(T))对的相似度得S(f(I),g(T)),简写为S(I,T)
  • DNN记忆性:

DNNs tend to first learn simple samples and then gradually fit the noisy samples. This so-called memorization effect of DNNs will lead to a relatively low loss for the clean samples.

对于上面这个loss,我们用per-sample loss

3-2.Divide:根据w将数据分成clean(𝐷c)和noisy(𝐷𝑛)

在这里插入图片描述
(在文中,预测的True Positive分到clean数据集,预测的False Positive分到noisy)

后验概率详解: w i = p ( k ∣ l i ) = p ( k ) p ( l i ∣ k ) / p ( l i ) w_i = p(k|l_i) = p(k)p(l_i|k)/p(l_i) wi=p(kli)=p(k)p(lik)/p(li)
p(k|li)是第i个数据是clean的概率,k指有较低平均值的高斯成分 实际含义是第i个数据属于第k类的概率 后验概率可以用来分类,绝绝子

3-3.Rectify:预测数据标签𝑦 ̂

在这里插入图片描述
公式里的原标签y=1,毕竟noisy corresponding是解决y=1但是实际是false positive的问题。

3-4.Training:标签𝑦 ̂+Lsoft训练网络B

在这里插入图片描述
soft-margin指数增长的好处是:让正对True Positive的相似度S与和该正对有关的 相似度最大的 负对hard negative拉的更开

4.一些细节

在这里插入图片描述

6.为什么divide已经预测了数据对为clean的概率,但还有rectify这一步:交叉,预测的clean数据集中可能有false positive,预测的noisy数据集中可能有true positive

5.实验结果

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值