NCR
1.背景
要解决的问题:识别False Positive,并尽可能找到最佳配对
2.网络
这是原文网络,之后会拆开讲
3.流程
左边是文章原图,右边是我自己补充了一些细节后的图
原图中用S表示数据集,由于在文中S也表示相似度,所以我改成D了,方便讲解
3-0.数据集与A/B网络 && 3-1.Warmup:A/B网络预训练
- 数据集:
(noisy correspondence 指的是y=1但是实际是false positive对) - A/B网络:包含f,g,S三个网络。f/g将I/T embeding到同一维度,S网络计算(f(I),g(T))对的相似度得S(f(I),g(T)),简写为S(I,T)
- DNN记忆性:
DNNs tend to first learn simple samples and then gradually fit the noisy samples. This so-called memorization effect of DNNs will lead to a relatively low loss for the clean samples.
对于上面这个loss,我们用per-sample loss
3-2.Divide:根据w将数据分成clean(𝐷c)和noisy(𝐷𝑛)
(在文中,预测的True Positive分到clean数据集,预测的False Positive分到noisy)
后验概率详解: w i = p ( k ∣ l i ) = p ( k ) p ( l i ∣ k ) / p ( l i ) w_i = p(k|l_i) = p(k)p(l_i|k)/p(l_i) wi=p(k∣li)=p(k)p(li∣k)/p(li)
p(k|li)是第i个数据是clean的概率,k指有较低平均值的高斯成分 实际含义是第i个数据属于第k类的概率 后验概率可以用来分类,绝绝子
3-3.Rectify:预测数据标签𝑦 ̂
公式里的原标签y=1,毕竟noisy corresponding是解决y=1但是实际是false positive的问题。
3-4.Training:标签𝑦 ̂+Lsoft训练网络B
soft-margin指数增长的好处是:让正对True Positive的相似度S与和该正对有关的 相似度最大的 负对hard negative拉的更开
4.一些细节
6.为什么divide已经预测了数据对为clean的概率,但还有rectify这一步:交叉,预测的clean数据集中可能有false positive,预测的noisy数据集中可能有true positive