win10+linux双系统,搭建深度学习pytorch环境

更改bios设置

安装linux系统

删除linux系统

安装双系统后Ubuntu下不能访问windows下磁盘解决方案
https://www.jianshu.com/p/9f6c13b5ab8c

安装anaconda3
linux下安装Anaconda
https://blog.csdn.net/shuzfan/article/details/78510683

虚拟环境
查看虚拟环境
conda env list

创建虚拟环境
conda create -n pytorch python=3.6
conda create --name (此处替换为您创建的项目名) (此处对应您所需python版本)

激活虚拟环境
source activate
conda activate pytorch
conda deactivate
source deactivate
删除虚拟环境
conda remove -n your_env_name(虚拟环境名称) --all

安装pytorch
conda install pytorch-cpu torchvision-cpu -c pytorch

安装pycharm
Linux 下安装 Python IDE :PyCharm
https://www.linuxprobe.com/linux-install-pycharm.html
配置pytorch环境
https://blog.csdn.net/qq_41528502/article/details/105715053
更改语言
https://zhuanlan.zhihu.com/p/191594818

卸载软件
https://blog.csdn.net/luckydog612/article/details/80877179

### 如何在Linux系统上运行深度学习代码 #### 准备工作 为了确保能够在Linux服务器上顺利执行深度学习任务,前期准备工作至关重要。这包括但不限于安装必要的软件包和支持库。对于Python编程语言而言,在Linux环境中部署深度学习模型通常建议通过Anaconda来管理依赖关系和创建隔离的工作空间。 #### 安装Anaconda 使用清华大学开源软件镜像站提供的资源可以加速下载过程。具体命令如下所示: ```bash wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/Anaconda3-2021.05-Linux-x86_64.sh ``` 接着按照提示完成Anaconda的安装流程[^2]。 #### 配置环境变量 一旦成功安装了Anaconda之后,则需将其路径添加到系统的环境变量当中以便于后续操作更加便捷高效。可以通过编辑`~/.bashrc`文件并将下面这一行追加进去实现此目的: ```bash source ~/anaconda3/bin/activate ``` 保存更改后记得重新加载该配置文件使设置生效: ```bash source ~/.bashrc ``` #### 创建虚拟环境 考虑到不同项目可能涉及到版本兼容性等问题,因此推荐针对每一个新启动的任务都单独建立一个新的Conda虚拟环境来进行开发测试活动。例如要基于Python 3.9构建名为`python39`的新环境可参照下述指令集行事: ```bash conda create --name python39 python=3.9 ``` 激活刚刚创建出来的这个特定版本号下的解释器实例之前还需要先切换过去才行: ```bash conda activate python39 ``` 此时如果想要验证当前所处的状态是否正确无误的话,那么可以直接调用`which python`查看默认使用的二进制位置信息确认无疑是在预期范围之内即为/home/user_name/anaconda3/envs/python39/bin/python[^3]。 #### 编写与调试脚本 当一切准备就绪以后就可以着手编写具体的业务逻辑部分了。这里假设有一个简单的神经网络训练案例存放在本地计算机之中等待迁移至远程主机上面继续推进下去。利用SCP协议能够轻松达成传输目标;另外也可以考虑借助VSCode这类集成IDE工具直接连接SSH通道在线编码调整参数直至满意为止。 #### 执行程序 最后一步就是实际提交作业给计算节点处理啦。一般情况下只要简单输入类似这样的语句就能让整个工程跑起来: ```bash python your_script.py ``` 不过有时候出于性能优化考量或许会希望进一步指定GPU设备编号从而充分利用硬件加速特性提升效率效果更佳哦!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值