自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(27)
  • 收藏
  • 关注

原创 使用AI API生成巧妙谜语并引导用户找答案

AI生成内容已经在各种领域得到广泛应用,从文本生成到图像创作。自动生成谜语并不只是简单地随机组合文字,而是需要AI理解谜语的结构和逻辑,以便生成具有挑战性但又可以解开的谜语。

2025-01-21 11:20:10 446

原创 使用Python生成器优化斐波那契数列生成

斐波那契数列是一个经典的问题,通常在学习递归和动态规划时遇到。,且初始值为。

2025-01-21 09:40:45 316

原创 使用单个HTML文件创建交互式打字速度游戏

在这篇文章中,我将带你一步步创建一个交互式打字速度游戏。这是一个简单的横向滚动游戏,玩家可以使用WASD键来移动角色。玩家需要在遇到单词时快速输入正确的单词,以获得更高的分数。我们将使用Tailwind CSS来美化我们的网站,并确保其响应性。所有的代码都将在一个HTML文件中实现,使其易于维护和部署。横向滚动游戏在游戏开发中非常受欢迎,因为它们简单易上手,同时又充满趣味性。通过将打字速度与游戏结合,我们不仅可以提供一个娱乐的平台,还能训练玩家的打字速度。我们的目标是让玩家控制一个角色在屏幕上移动,当角色碰

2025-01-21 07:37:44 1636

原创 使用 AI API 构建嵌入向量指南

嵌入向量是将文本数据转换为固定长度的数值向量的过程。这些向量能够捕捉词汇之间的语义关系,从而使机器能够“理解”自然语言。嵌入广泛用于各种应用,包括自然语言处理(NLP)、信息检索和推荐系统。

2025-01-21 05:06:22 321

原创 利用Claude 3系列模型的视觉能力进行多模态交互

Claude的视觉能力使其能够分析图像,这在许多应用场景中非常有用,如图像描述、比较和视觉数据分析。通过API接口,我们可以轻松地将图像上传到Claude进行处理和分析。

2025-01-20 19:03:51 628

原创 利用Rememberizer增强AI应用的知识获取

Rememberizer是一个知识增强服务,专注于为AI应用提供高效的文档检索功能。通过在Rememberizer平台上创建通用知识库,开发者可以使用提供的API检索相关的文档信息。

2025-01-11 17:55:02 169

原创 使用 Zep Cloud 实现 AI 长期记忆和个性化体验

AI 应用越来越多地需要处理长时间的会话内容,如聊天记录、文档搜索等。遗忘问题:无法回忆起此前上下文中的信息。幻觉现象:生成与事实不符的内容。响应延迟:需要实时处理大量数据,导致性能下降。成本高昂:处理大规模数据存储和计算时费用激增。为解决这些问题,Zep 提供了一个长期记忆(long-term memory)服务,专为 AI 助手应用设计。在对话中回忆过去的任意上下文。自动嵌入(embedding)文档,用于快速向量检索。降低幻觉率、提升性能并控制成本。

2025-01-11 17:15:19 421

原创 利用 Titan Takeoff 部署本地 LLM:从入门到精通

随着大语言模型(LLM)的普及,部署这些模型的成本和效率成为企业面临的重要问题。通常情况下,这需要高度专业化的基础设施和工程团队。然而,TitanML提供了一种创新的解决方案,通过其平台,可以轻松地在本地机器上快速部署 LLM,无需昂贵的服务器或复杂的云配置。Titan Takeoff 支持大多数主流生成式模型架构,包括 Falcon、Llama 2、GPT-2、T5 等。这为构建高性能、更经济的小型 NLP 应用打开了新世界的大门。

2025-01-10 15:45:55 683

原创 [深入解读并实践:Llama.cpp 的安装与使用指南]

Llama.cpp 是一个基于 C++ 的开源项目,旨在在设备本地运行 LLM 模型(如 LLaMA 2)。通过,我们可以在 Python 环境中调用 Llama.cpp 的功能。这种方法不仅避免了对 API 调用的依赖,还使得在隐私、安全性要求较高的场景中脱颖而出。支持多种硬件(CPU、GPU、Metal GPU 等)。高效支持多种量化格式的模型(如 GGML 和 GGUF)。易于集成到 LangChain 等 Python 工具链中。以下示例展示了如何通过grammar。

2025-01-10 15:01:52 2264

原创 使用LangChain SolarChat实现自动化翻译:从英语到韩语

LangChain 是一个强大的框架,用于构建基于语言模型的应用。它支持多种语言模型和服务,帮助开发者高效实现复杂的 NLP 工作流。而SolarChat是 LangChain 的一个具体实现,它利用强大的模型能力,为用户提供可靠的对话服务。引入所需的库和模块。配置SolarChat模型,并发送对话请求。返回并解析翻译结果。

2025-01-10 13:52:49 425

原创 使用RWKV-4模型在LangChain中的应用

RWKV-4是一种基于Transformer架构的语言模型,相较于其他大型语言模型,它更注重资源利用效率,尤其在低计算资源环境中表现优异。它能够在不同的硬件配置上运行,包括CPU和GPU,适合于研究和开发人员。

2025-01-09 14:18:02 340

原创 使用Neo4j构建和查询图数据库的入门指南

Neo4j是一款开源的图数据库管理系统,专注于处理图数据技术。与传统的关系型数据库不同,Neo4j允许你使用节点(nodes)和边(edges)来表示和存储数据,非常适合处理连接数据及其关系。其提供的Cypher查询语言使得查询和操作图数据变得十分简单。Neo4j擅长高性能的图遍历和查询,非常适合用于生产级系统。

2025-01-09 11:26:27 235

原创 使用 MLflow AI Gateway 来管理大模型服务

MLflow AI Gateway 是一个工具服务,旨在简化企业内部不同大型语言模型的使用和管理。它将各种语言模型服务统合于一个统一的接口,简化了API集成并提升了开发效率。

2025-01-09 10:37:04 331

原创 在向量检索中运用 Infinispan——安装、设置与应用示例

Infinispan 是一个开源的内存数据网格,提供了一种能够持有各种数据类型(从 Java 对象到纯文本)的键值数据存储解决方案。自版本 15 起,Infinispan 开始支持基于缓存的向量搜索,这使得它在现代数据密集型应用中具有更广泛的应用潜力。

2025-01-09 08:02:59 201

原创 使用IMSDbLoader加载电影剧本的实践指南

IMSDb是一个广泛使用的互联网电影剧本数据库,涵盖了大量经典和现代电影的剧本。这些剧本可用于自然语言处理、文本分析和生成性AI应用。对于AI开发者来说,能够访问和处理这些剧本数据至关重要。

2025-01-09 07:57:28 355

原创 利用CnosDB进行高效时间序列数据查询

CnosDB是专为处理海量时间序列数据而设计的数据库,它支持高效的数据压缩和快速的查询响应。对于需要处理大量传感器数据或频繁变化的数据集的应用,CnosDB提供了一个理想的解决方案。

2025-01-09 02:33:18 310

原创 [在AI应用中如何使用AZLyrics进行歌词分析]

歌词数据是NLP中处理文本分析的一个优秀资源。通过分析歌词,你可以进行情感分析、主题提取、艺术家风格研究等。AZLyrics拥有大量的歌词数据,可以为这些分析提供充分的文本资源。

2025-01-09 00:15:55 677

原创 使用 AssemblyAI 实现高效的语音转文本处理

AssemblyAI 专注于构建语音 AI 模型,这些模型可以用于将语音数据(如电话、虚拟会议、播客等)转化为准确的文本信息。同时,它还提供了功能强大的说话者检测、情感分析、章节检测以及 PII(Personally Identifiable Information)编辑等功能。

2025-01-08 23:59:31 1072

原创 使用 Arxiv API 和 Python 进行学术文章检索与处理

arXiv 是一个开放访问的学术文章存档平台,提供了物理学、数学、计算机科学等领域的大量资源。通过使用 arXiv 的 API,我们可以方便地在 Python 中检索文章信息,并结合 PyMuPDF 等工具进行 PDF 文件的解析和处理。

2025-01-08 23:48:34 753

原创 利用GROBID解析学术PDF文件的工作流程

GROBID是一个开源工具,能将PDF转换成结构化XML格式的文本,并提取出其中的元数据信息,如标题、作者、摘要等。这一工具在处理学术论文时尤其有用,因为论文中包含大量结构化信息,如章节、引文等。

2025-01-08 19:27:15 379

原创 使用XML-Agent与LangChain构建智能XML交互应用

XML-Agent之所以被开发,是因为在某些应用场景中,需要以结构化的XML格式进行信息交流。该工具包通过调用Anthropic提供的强大自然语言处理能力,实现对XML格式的撰写和解析。此外,还支持与DuckDuckGo集成进行网络查找,以丰富智能决策的输入源。

2025-01-08 18:53:26 252

原创 构建基于Timescale的对话检索系统

对话检索系统的核心思想是通过上下文和文档的结合,提升模型的回答准确性。为了实现这一目标,我们需要一个稳健的向量存储系统。Timescale Vector就是这样一个数据库,它能够高效地索引和检索嵌入向量。若要加载自己的数据集,需要实现一个函数。可参考中的函数。

2025-01-08 17:16:03 322

原创 使用RAG多模态本地应用进行私人视觉搜索和问答

视觉搜索作为一种应用,已被广泛应用于智能手机上。利用自然语言来搜索照片使得用户查找照片变得直观而高效。随着开源多模态大语言模型(LLM)的发展,我们可以自行搭建这样的应用,对私人照片集进行搜索和问答。本文将展示如何使用多模态嵌入和Ollama来实现私人视觉搜索和问答的应用。通过提供问题,从照片集中检索相关的照片,并传递给开源多模态LLM进行答案生成。

2025-01-08 16:14:12 283

原创 使用 MongoDB 和 OpenAI 实现 RAG 的实战指南

RAG 方法通过结合检索和生成技术,实现更加丰富和准确的信息生成。MongoDB 作为NoSQL数据库,可以高效地存储和检索大量的非结构化数据。而 OpenAI 的语言模型(LLM)则能够理解自然语言和生成高质量的文本。这两者的结合构成了本文的核心技术。

2025-01-08 15:57:46 624

原创 使用 Multi-modal LLM 创建强大的幻灯片视觉助手

幻灯片通常包含大量的视觉数据,单靠文本难以完整表达。传统上,提取或分析这些信息需要繁琐的手动工作。随着 OpenCLIP 和类似技术的出现,我们可以自动地将视觉信息编码为可搜索的格式,并利用多模态模型进行问答。

2025-01-08 15:01:25 372

原创 使用RAG-Chroma多模态技术创建视觉辅助助手

多模态LLM使得视觉问答系统成为可能。通过将文本和视觉信息映射到同一嵌入空间,我们可以实现图像和文本之间的语义匹配。这篇文章将探讨如何使用RAG-Chroma多模态模板来开发一个能处理幻灯片文档的视觉助手。这项技术利用OpenCLIP的嵌入和GPT-4V进行答案合成,帮助用户从幻灯片中提取相关信息。

2025-01-08 14:22:15 490

原创 使用OpenAI函数实现文本信息抽取

在语言模型中,编码器和解码器都是由一个个的 Transformer 组件拼接在一起形成的。openAI 的 GPT 大模型的发展历程。提供先进的推理,复杂的指令,更多的创造力。

2025-01-08 00:13:05 397

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除