在计算特征重要度时,正值表示该特征对模型预测目标的正向影响较大,即该特征的增加能够提高模型的预测性能;负值表示该特征对模型预测目标的负向影响较大,即该特征的减少能够提高模型的预测性能;零表示该特征对模型预测目标的影响较小,即该特征的变化对模型的预测性能影响不大。
如果一个特征的重要度为-0.1,另一个特征的重要度为+0.1,虽然它们的符号相反,但重要度的大小是相等的。
随机森林是由多个决策树组成的集成模型,它的随机性来源于两个方面:随机选择训练样本和随机选择特征。n_estimators是随机森林中决策树的数量,当n_estimators的取值较大时,每个基本决策树的建立过程中使用的特征和划分会趋于相似,因为它们都会看到训练数据集的完整特征。这会导致许多决策树都使用相同的特征和划分,导致较多的特征被剔除或重要度得分为0。
当n_estimators的取值较小时,每个基本决策树的建立都具有更强的随机性,因为它们只看到训练数据集的一个子集。这意味着,不同的决策树会使用不同的特征和划分,可能会导致更多的特征出现在分支中,从而使更多的特征具有非零的重要度得分。因此,当n_estimators较小时,随机森林的随机性增加,每个基本决策树使用的特征和划分更加不同,导致更多的特征出现在分支中,从而提高了这些特征的重要度得分。