tensor在pytorch中是一个非常重要的类型
假如需要计算梯度,就将tensor中 requires_grad设为true
loss是一个张量,在做运算时构建运算图,因此不要直接进行,会将将梯度存入w,当反向传播完成 后,该计算图会被释放
这里注意一下grad即梯度也是一个tensor类型,要取到data才能做运算
import torch
x_data=[1.0,2.0,3.0]#x
y_data=[2.0,4.0,6.0]#y
w=torch.Tensor([1.0])
w.requires_grad=True
def forward(x):
return x*w#w是一个tensor,就是梯度
def loss(x,y):
y_pred=forward(x)
return (y_pred-y)**2#损失值
print('predict (before training)',4,forward(4).item())
for epoch in range(100):
for x,y in zip(x_data,y_data):
l=loss(x,y)
l.backward()#自动调用偏导
print('/tgrad:',x,y,w.grad.item())
w.grad.data.zero_()
print('progress:',epoch,l.item())
print('predict(after training)',4,forward(4).item())
线性回归就是一个最简单的只有一个神经元的神经网络
import torch
x_data=torch.tensor([[1.0],[2.0],[3.0]])#x
y_data=torch.tensor([[2.0],[4.0],[6.0]])#y
class LinearModel(torch.nn.Module):
def __init__(self):
super(LinearModel, self).__init__()
self.linear=torch.nn.Linear(1,1)
def forward(self,x):
y_pred=self.linear(x)
return y_pred
model=LinearModel()
criterion=torch.nn.MSELoss(size_average=False)
optimistic=torch.optim.SGD(model.parameters(),lr=0.01)
for epoch in range(100):
y_pred=model(x_data)
loss=criterion(y_pred,y_data)
print(epoch,loss.item())
optimistic.zero_grad()#清除梯度
loss.backward()#计算梯度
optimistic.step()#更新参数
print('w=',model.linear.weight.item())
print('b=',model.linear.bias.item())
x_test=torch.Tensor([[4.0]])
y_test=model(x_test)
print('y_pred=',y_test.data)