pytorch系列6 -- activation_function 激活函数 relu, leakly_relu, tanh, sigmoid及其优缺点

主要包括:

  1. 为什么需要非线性激活函数?
  2. 常见的激活函数有哪些?
  3. python代码可视化激活函数在线性回归中的变现
  4. pytorch激活函数的源码

为什么需要非线性的激活函数呢?
只是将两个或多个线性网络层叠加,并不能学习一个新的东西,接下来通过简单的例子来说明一下:

假设

  • 输入 x x x
  • 第一层网络参数: w 1 = 3 , b 1 = 1 w_1 = 3, b_1=1 w1=3,b1=1
  • 第二层网络参数: w 2 = 2 , b 2 = 2 w_2=2, b_2=2 w2=2,b2=2

经过第一层后输出为 y 1 = 3 × x + 1 y_1 = 3\times x + 1 y1=3×x+1经过第二层后的输出为: y 2 = 2 × y 1 + 2 = 2 × ( 3 × x + 1 ) + 2 = 6 × x + 4 y_2=2\times y_1 +2 = 2\times(3\times x+ 1) + 2=6 \times x +4 y2=2×y1+2=2×(3×x+1)+2=6×x+4

是不是等同于一层网络: w = 6 , b = 4 w=6,b=4 w=6,b=4

所以说简单的堆叠网络层,而不经过非线性激活函数激活,并不能学习到新的特征学到的仍然是线性关系。

接下来看一下经过激活函数呢?

仍假设

  • 输入 x x x
  • 第一层网络参数: w 1 = 3 , b 1 = 1 w_1 = 3, b_1=1 w1=3,b1=1
  • 经过激活函数Relu: f ( x ) = m a x ( 0
### ReLU 激活函数在深度学习中的使用及代码实现 ReLU(Rectified Linear Unit)激活函数是一种常见的非线性激活函数,其核心作用在于引入非线性变换,使神经网络能够学习更复杂的模式和特征[^2]。它通过简单的数学表达式 \(f(x) = \max(0, x)\) 实现,在输入小于等于零时输出为零,而在输入大于零时输出等于输入值。 #### ReLU 的特点 - **计算简单**:由于仅涉及最大值运算,ReLU 的计算成本较低。 - **无梯度消失问题**:对于正数区域,ReLU 的导数恒为 1,因此不会像某些其他激活函数那样出现梯度消失现象。 - **加速收敛**:相比传统的 sigmoidtanh 函数ReLU 能够显著加快模型的训练速度并提升泛化能力[^2]。 #### TensorFlow 中的 ReLU 实现 以下是使用 TensorFlow 实现 ReLU 激活函数的示例: ```python import tensorflow as tf # 定义一个简单的全连接层,并应用 ReLU 激活函数 model = tf.keras.Sequential([ tf.keras.layers.Dense(64, activation='relu', input_shape=(32,)), # 隐藏层,64个单元 tf.keras.layers.Dense(10) # 输出层 ]) # 打印模型结构 model.summary() ``` 在此代码中,`activation='relu'` 参数指定了该层使用的激活函数ReLU[^1]。 #### PyTorch 中的 ReLU 实现 下面是一个基于 PyTorchReLU 使用示例: ```python import torch import torch.nn as nn class ModelWithReLU(nn.Module): def __init__(self): super(ModelWithReLU, self).__init__() self.fc1 = nn.Linear(10, 5) # 输入维度为10,输出维度为5 self.relu = nn.ReLU() # ReLU激活函数 def forward(self, x): x = self.fc1(x) x = self.relu(x) return x # 创建模型实例 model = ModelWithReLU() # 输入示例 input_data = torch.randn(3, 10) # 输入数据维度为(3, 10) # 前向传播 output = model(input_data) print(output) ``` 此代码展示了如何在自定义模型中集成 ReLU 激活函数。 #### 计算图表示与反向传播 为了进一步理解 ReLU 层的工作机制,可以通过构建计算图来描述其前向传播和反向传播过程。以下是从头开始手动实现 ReLU 及其梯度计算的方法: ```python import numpy as np def relu_forward(x): """ReLU 前向传播""" cache = x out = np.maximum(0, x) return out, cache def relu_backward(dout, cache): """ReLU 反向传播""" dx, x = None, cache dx = dout.copy() dx[x <= 0] = 0 return dx # 测试 x = np.array([-1, 2, -3, 4]) dout = np.array([1, 1, 1, 1]) out, cache = relu_forward(x) dx = relu_backward(dout, cache) print("前向传播结果:", out) print("反向传播梯度:", dx) ``` 这段代码实现了 ReLU 的前向传播和反向传播逻辑,便于深入研究其内部工作机制[^3]。 --- ###
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值