- 博客(76)
- 收藏
- 关注
原创 ASR/TTS model 通过量化提升推理速度
摘要:量化是优化sherpa-onnx ASR和TTS模型性能的高效方法,支持INT8/INT16和动态量化。INT8量化可减少模型大小约75%,提升推理速度2-4倍,精度损失仅1-3%。Whisper、Paraformer等ASR模型和VITS等TTS模型量化后性能显著提升。推荐使用onnxruntime或Intel Neural Compressor工具,从动态量化入手,再根据需求选择静态量化调优。量化适用于嵌入式设备部署,建议优先测试动态INT8量化以获得2-4倍性能提升。(150字)
2025-05-26 22:37:56
487
原创 使用arXiv.org上的资源进行学术研究
arXiv.org 是一个专注于物理学、数学、计算机科学、定量生物学、定量金融学和统计学等领域的学术预印本平台,旨在促进科学文献的快速传播与交流。用户可以在该网站上免费获取大量未经同行评审的学术论文预印本,研究人员也常在此分享研究成果以获取反馈。网站覆盖广泛的学科领域,并提供了详细的分类和搜索功能,方便用户追踪最新研究进展。arXiv.org 不仅加速了学术交流,还为科研人员提供了丰富的文献资源,是开展学术研究的重要参考平台。
2025-05-23 17:24:43
950
原创 什么是Rootfs
Rootfs(Root Filesystem,根文件系统)是操作系统启动后挂载的第一个文件系统,它包含系统正常运行所需的基本目录结构和文件。系统启动时,内核会首先将rootfs挂载到根目录(/)上,然后才能访问其他文件系统。
2025-05-20 16:33:37
680
原创 介绍Buildroot
Buildroot是一个专为嵌入式Linux系统开发设计的强大工具,其主要功能包括自动化交叉编译系统、生成完整的Linux系统、软件包管理和配置系统。它支持多种目标架构,如ARM、MIPS、RISC-V和x86,并能自动构建从引导加载程序到根文件系统的所有组件。Buildroot的优势在于其轻量且高度可定制的特性,适合资源受限的嵌入式设备,同时提供易于使用的命令行工具和全面的文档。它还能生成交叉编译工具链、引导加载程序、Linux内核、根文件系统以及应用程序和库。典型使用场景包括嵌入式设备开发、原型设计、产
2025-05-20 15:00:10
379
原创 神经网络极简入门技术分享
本文介绍了神经网络的基本概念和工作原理,旨在帮助初学者理解这一深度学习的基础技术。文章首先阐述了神经网络的组成部分,包括神经元、权重、偏置、激活函数和层结构,并对比了生物神经元与人工神经元的相似性。接着,详细解释了神经元的数学模型和Sigmoid激活函数的作用,并通过Python代码展示了神经元的实现。随后,文章描述了如何从单个神经元构建简单的神经网络,并介绍了神经网络的工作流程和训练方法,特别是随机梯度下降算法。最后,文章通过鸢尾花分类的实际应用示例,展示了神经网络的训练与预测过程,并讨论了神经网络的优势
2025-05-10 23:01:13
831
原创 音视频开源项目列表
这些开源项目涵盖了音视频开发的各个方面,从基础的编解码到高级的AI处理。选择合适的项目可以大大加快开发进度,同时通过阅读源码也能深入学习音视频技术。建议从简单的项目开始,逐步深入到更复杂的系统级项目。- FFmpeg工具集的一部分。
2025-05-03 23:09:52
1360
原创 音视频开发技术总结报告
音视频开发是一个技术密集型领域,需要扎实的基础知识和持续的学习。从基础的音视频原理,到编解码技术,再到流媒体传输和实时通信,每个环节都需要深入理解和实践。打好基础:掌握音视频基本原理和编程基础动手实践:通过开源项目学习和实践深入专研:选择一个方向深入研究持续学习:关注新技术和行业动态随着5G、AI、VR/AR等技术的发展,音视频开发领域将会有更广阔的发展空间和更多的挑战。希望这份总结能够帮助音视频开发者更好地规划学习路径和职业发展。
2025-05-03 23:08:55
764
原创 音视频开发成长之路与音视频知识总结
音频基础声波原理:频率、振幅、相位数字音频:采样、量化、编码音频参数:采样率、位深度、声道数音频编解码PCM:脉冲编码调制有损压缩:MP3、AAC、Opus无损压缩:FLAC、APE、ALAC音频处理降噪、回声消除、自动增益控制音频特效:混响、均衡器、变声3D音频:立体声、环绕声。
2025-05-03 23:07:48
1056
原创 OpenHarmony OS 5.0与Android 13显示框架对比
应用层:ArkUI应用和第三方应用框架层:ArkUI框架、窗口管理API系统服务层:图形合成服务、窗口管理服务、ArkGraphics内核层:内核抽象层(KAL)支持多内核(Linux/LiteOS/HarmonyOS微内核)与早期版本的HarmonyOS不同,5.0版本已完全摆脱了对Android兼容层的依赖,使用了自主研发的单一框架架构,基于OpenHarmony L0-L2代码分支开发。架构设计:OpenHarmony采用微内核和多内核支持的分层架构,注重分布式能力;
2025-04-22 13:42:44
896
原创 Ubuntu与OpenHarmony OS 5.0显示系统架构比较
Ubuntu采用传统Linux显示栈架构,自顶向下可分为:OpenHarmony OS采用分层式架构,自顶向下分为:Ubuntu和OpenHarmony OS 5.0在显示系统架构上体现了不同的设计理念:Ubuntu显示架构遵循传统Linux图形栈,从X11向Wayland演进,注重开放标准和广泛兼容性。其基于成熟的DRM/KMS子系统和Mesa图形库,为用户提供稳定可靠的桌面体验。OpenHarmony OS 5.0采用全新设计的分层架构,通过内核抽象层支持多种内核,特别强调分布式能力和设备互联。其自研A
2025-04-22 12:48:36
1165
原创 Ubuntu-Linux从桌面到显示的全流程:技术分析总结
Ubuntu的显示系统是一个复杂而精密的技术栈,从应用程序到屏幕显示涉及多个层次的协作。随着从X11到Wayland的过渡,Ubuntu正在向更现代、更高效、更安全的图形架构演进,为用户提供更好的桌面体验。理解这一技术流程不仅有助于解决显示问题,也为系统优化和应用开发提供了重要参考。
2025-04-22 12:40:18
779
原创 Linux DRM显示驱动框架技术总结
Direct Rendering Manager (DRM) 是现代Linux系统中的主流显示框架,专为支持当代显示硬件而设计。DRM框架的发展经历了多个重要里程碑,包括2008年引入的图形执行管理器(GEM)和2009年引入的内核模式设置(KMS)。
2025-04-22 12:31:54
466
原创 开源鸿蒙分布式软总线技术研究报告
其次,分布式软总线支持异构网络,即使设备使用的网络技术不同(例如,一个设备只有 Wi-Fi,另一个只有蓝牙),也能够实现互联互通和数据共享。为了更好地满足不同业务的需求,分布式软总线对业务数据和 QoS(服务质量)要求进行了抽象,并能够根据当前的网络负载和设备的性能,为业务选择合适的传输技术。与常见的物联网通信协议(如 MQTT、CoAP、Zigbee、Z-Wave)相比 ,开源鸿蒙分布式软总线旨在提供一个更全面和集成的解决方案,不仅限于低功耗的物联网设备,还包括高性能的移动设备。
2025-03-31 16:21:48
880
原创 Open HarmonyOS 5.0 分布式软总线子系统 (DSoftBus) 详细设计与运行分析报告
HarmonyOS 5.0,又称鸿蒙星河版,标志着操作系统架构的重大演进,其核心在于转向自研的微内核系统 1。此版本摒弃了先前版本中兼容安卓的双框架模式,全面拥抱原生 HarmonyOS 应用生态 1。HarmonyOS 5.0 的系统架构呈现出清晰的层次结构,由下至上依次为:内核层、系统服务层、框架层和应用层 2。HarmonyOS 5.0 (NEXT) 采用微内核架构,这代表着一个根本性的架构转变,旨在通过隔离关键系统组件来增强安全性和性能 1。
2025-03-29 00:14:52
1219
原创 鸿蒙OS 5.0 服务能力框架深入剖析
在 OnRemoteRequest() 的实现中,开发者需要根据不同的调用代码,从输入的 MessageParcel 中读取参数(解封),然后调用实际的服务实现方法,并将方法的返回值写入到输出的 MessageParcel 中(封装)6。操作系统的分层架构,从底层的内核层到系统服务层、框架层,再到应用层,为理解服务能力及其相关类在整个系统中的位置提供了基础 3。这些类的协同工作方式不仅实现了模块化,使得不同的功能可以作为独立的服务运行,而且提高了代码的重用性,因为多个客户端可以连接到同一个服务能力。
2025-03-28 22:14:52
897
原创 【思考】怎么才能算一个成熟的操作系统
成熟的操作系统需要在技术、用户需求和商业策略之间找到平衡,通过持续创新和生态建设,满足多样化的应用场景,同时保持高效、安全和易用。:兼容主流应用格式(如Windows的EXE、Linux的ELF),支持跨平台框架(如Java、.NET)。:加密文件系统(如BitLocker、LUKS)和内存保护机制(如ASLR、DEP)。:图形界面(GUI)简洁易用,减少学习曲线(如macOS的Finder、GNOME)。:严格的用户和进程权限控制(如Unix的ACL、Windows的UAC)。
2025-03-26 16:37:40
333
原创 本地部署 DeepSeek-R1大模型详细教程 清晰易学
DeepSeek-R1 是一个由 DeepSeek 开发的推理型大型语言模型,其性能可与 OpenAI-o1 媲美,但其 671 亿参数(其中 37 亿激活参数,上下文长度 128K)使其本地部署对大多数用户而言不切实际。研究表明,该模型通过大规模强化学习(RL)训练,包含冷启动数据以提升推理能力,但其规模需要高性能计算资源,如多 GPU 集群。
2025-03-02 00:12:18
1106
原创 国产RISCV64 也能跑AI
我最近接触到了进迭时空研发的 Spacengine™,这是一套能在进迭时空 RISC-V 系列芯片上部署 AI 算法模型的工具。它让模型部署变得更简单,还能提升模型在芯片上的运行速度。
2025-03-01 23:41:23
474
原创 VMware 虚拟机中 Ubuntu 20 网络不通问题解决总结
在 VMware 虚拟机中的 Ubuntu 20 系统出现网络不通的问题,具体表现为无法 ping 通百度且无法访问网页。ip addr命令显示ens33网络接口处于异常状态,如显示DOWN等,并且获取到自动私有 IP 地址(
2025-02-09 21:31:00
728
原创 详细分析openharmony的这个配置文件
"parts": {],],这个配置文件是 OpenHarmony 的一个 JSON 格式的配置文件,它定义了一个名为的子系统及其组成部分。
2024-12-24 15:41:08
851
1
原创 OpenHarmony系统中实现Android虚拟化、模拟器相关的功能,包括桌面显示,详细解决方案
使用QEMU或KVM进行 Android 系统虚拟化。配置 OpenHarmony 与虚拟化技术的集成,确保 Android 系统能够在 OpenHarmony 上顺利运行。使用OpenGL或Vulkan进行 Android 系统桌面渲染,合成虚拟机中的 UI 和图形内容。捕获用户的触摸、键盘等输入事件,并将其传递给 Android 系统中的Activity,实现交互功能。通过日志和调试工具对虚拟化过程和图形渲染进行优化和调试。
2024-12-08 22:27:29
1146
原创 开发一个支持AMT的会议系统
协议的会议系统是一个较为复杂的任务,它涉及到音视频数据的实时传输、多播隧道的建立与管理、以及多用户间的通信。下面将提供一个详细的方案,并给出基础的实现代码,帮助你理解如何在 C++ 中实现这样的系统。协议来实现多播通信,确保不同地区的与会人员可以通过 IPv4 网络访问到远程的 IPv6 多播数据流。这个项目可以作为一个基础实现,未来可以进一步优化,比如增加音视频编码解码、加密、多用户管理等功能。的实时会议系统的详细方案和实现代码。将数据从客户端传送到服务器。这个项目将开发一个支持多播传输的实时会议系统。
2024-12-08 21:59:46
993
原创 开发一个AMT(automatic multicast tunnel)协议库 C++版本,Client,Server详细的设计
开发一个协议库的 C++ 实现,包括客户端(Client)和服务器(Server)代码,是一个具有挑战性但非常有趣的任务。AMT 是一种使 IPv4 网络能够支持 IPv6 多播通信的技术,它通过在现有的 IPv4 网络中创建隧道来实现跨越不同网络的多播通信。下面,我将详细说明如何设计和实现一个 AMT 协议库的框架,并提供。
2024-12-08 21:54:11
1039
原创 AI部署到扫地机嵌入式系统中(主控芯片:RK3399)的技术方案和代码实现,使用成熟的AI C++框架
选择硬件平台使用瑞芯微的RK3399芯片,该芯片支持AI和VSLAM技术,适合高性能计算需求。安装操作系统和必要软件安装Ubuntu或其他适用于RK3399的Linux发行版。安装OpenCV、ONNX Runtime等AI框架。模型转换和优化将YOLOv8模型转换为ONNX格式,并使用TensorRT进行优化,以提高推理速度和效率。开发视觉识别算法使用OpenCV进行图像处理和YOLOv8进行物体检测。将检测结果用于控制扫地机器人的运动。集成和测试。
2024-12-05 10:37:54
664
原创 Linux 内核系统架构
通过内核的配置和管理,Linux 实现了高效的硬件资源调度、稳定的系统服务支持和广泛的设备兼容性。Linux 内核是一个复杂且高度模块化的系统,负责操作硬件资源、管理进程和内存、提供网络服务、执行文件系统操作、进行设备驱动程序的管理等。进程管理是内核的核心任务之一,负责调度和管理执行中的进程。Linux 内核的内存管理负责高效地管理系统的内存资源,包括物理内存、虚拟内存、内存分配等。硬件抽象层是 Linux 内核与硬件之间的接口,它为系统提供了一个对硬件的抽象,允许内核不依赖于特定硬件进行操作。
2024-12-01 19:52:17
1505
原创 从开机到 Linux 内核执行的完整过程:代码解读
从开机到 Linux 内核执行的过程涉及多个重要步骤,包括硬件初始化、引导加载程序的工作、内核的加载与初始化、设备树的使用以及用户空间进程的启动。U-Boot 会根据存储介质(如 SD 卡、eMMC)中的配置加载 Linux 内核镜像、设备树文件(DTB 文件)及初始化 RAM 磁盘(initrd)。内核会根据设备树的信息加载和配置相应的设备驱动。U-Boot 是常用的引导加载程序之一,在启动过程中会执行一系列硬件初始化,并加载内核和设备树。当引导加载程序完成对内核和设备树的加载后,内核开始执行。
2024-12-01 19:10:34
1018
原创 从开机到 Linux 内核执行的完整过程:深入解析
本文将详细梳理这一过程,从设备开机的第一刻到 Linux 内核代码的执行,帮助你理解各个阶段的细节,以及每个环节所涉及的技术组件。这一过程涉及多个技术组件和工作环节,每个环节的顺利执行都确保了系统的稳定启动和硬件的正常运行。设备树是一个数据结构,用于描述硬件平台的配置信息,它包括了设备的地址、类型、驱动程序信息等。设备树包含了硬件设备的配置信息,内核需要根据这些信息正确地初始化硬件设备。在此阶段,设备上的所有硬件都处于一个未初始化的状态,Boot ROM 是确保硬件正确运行并加载后续引导程序的第一个环节。
2024-12-01 16:14:37
729
原创 ARM + Linux 开发指南
ARM Linux 系统的启动过程可以分为多个阶段,从 Boot ROM 启动到内核加载,再到内核初始化和用户空间启动。每个阶段都有其具体的职责,确保硬件和操作系统的正确启动。
2024-11-30 23:52:16
1185
原创 Android启动流程,代码分析
Android 启动流程复杂且多层次,从硬件初始化到系统进程启动再到应用的启动,每一层都依赖于上一层的初始化。应用启动过程中的关键组件包括Zygote和。理解这一流程对调试、优化和开发 Android 应用至关重要。
2024-11-30 19:38:10
895
原创 鸿蒙系统(harmony)支持Android应用的双框架技术架构分析
是为了在鸿蒙操作系统上实现对 Android 应用的兼容与支持,特别是在多设备生态下,确保不同类型的 Android 应用能够无缝运行在鸿蒙设备上。这种双框架架构使鸿蒙能够兼顾自身的原生应用生态和 Android 的广泛应用生态,从而提升系统的兼容性和应用支持能力。通过这套双框架技术架构,鸿蒙不仅能提高自身的生态兼容性,还能在未来的跨设备、多平台环境中发挥巨大优势,吸引更多用户和开发者的参与。此层也支持与第三方服务的集成。这一层是双框架架构的核心,它负责调度和协调 Android 应用和鸿蒙应用的执行。
2024-11-29 20:41:58
2580
原创 openharmony 下用jailhouse 虚拟化 rtos 技术方案
Jailhouse 是一个轻量级的硬件虚拟化解决方案,它通过直接使用硬件资源来隔离不同的操作系统。在 Jailhouse 环境下,所有的虚拟机(或称为 "cells")共享 CPU 和内存资源,但每个虚拟机有自己的资源分配,并且通过硬件支持实现高效的资源隔离。Jailhouse 采用硬件级隔离,即使用硬件虚拟化扩展(如 ARM 的 Virtualization Extensions 或 Intel VT-x)来进行资源隔离,而不是通过软件模拟。
2024-11-29 20:20:19
959
原创 openharmony 下的 rtos虚拟化方案
在 OpenHarmony 下实现 RTOS 虚拟化方案,需要解决多个操作系统的资源隔离、调度与管理问题,同时保障系统的实时性、效率和稳定性。通过虚拟化技术、分布式架构和硬件抽象,OpenHarmony 可以与多个 RTOS 环境协同工作,为不同的硬件平台提供灵活、高效的解决方案。这将为物联网设备、嵌入式系统以及需要高实时性和低延迟的应用场景提供强大的支持。
2024-11-29 20:15:28
1206
原创 在OpenHarmony系统下开发支持Android应用的双框架系统
实现一个双框架系统的关键挑战是如何在 OpenHarmony 上运行 Android 应用,同时充分利用 OpenHarmony 系统的分布式、轻量级特性。以下是这个系统的高层架构设计。
2024-11-29 20:05:46
1277
原创 什么是LLM,什么是transformer
LLM(大规模语言模型)是人工智能领域的重要突破,它使得机器能够理解和生成自然语言,极大地推动了 NLP 技术的发展。无论是在自然语言生成、对话系统、机器翻译,还是信息检索等领域,LLM 都展现了巨大的潜力。随着技术的不断进步,我们有理由相信 LLM 在未来将会更加智能、更加广泛应用于各类智能应用中。是一种深度学习模型架构,首次由Vaswani 等人于 2017 年提出,名为《Attention is All You Need》的论文中。
2024-11-29 17:30:36
912
原创 AI agent开发技术栈
开发 AI Agent 是一个跨领域、多层次的工程项目,需要掌握基础机器学习与深度学习技术,同时具备对强化学习、系统部署、数据处理等领域的深入理解。通过逐步掌握上述技术栈,实践应用并参与开源社区,你可以逐渐成长为 AI Agent 的开发专家,并应对未来人工智能领域的新挑战。
2024-11-29 17:26:42
1018
原创 AI开发工程师的技术栈
成为一名 AI 开发工程师需要广泛的技能组合和持续的学习热情。从基础的编程和数学知识开始,逐步深入到机器学习和深度学习的核心技术,并通过参与实际项目、开源社区和行业应用来积累经验。未来 AI 的发展方向还包括生成式 AI(如 GPT-4)、强化学习和多模态 AI 等,保持对前沿技术的关注也非常重要。
2024-11-29 17:24:26
2145
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人