
AI
文章平均质量分 70
DecentX
万事无他 唯手熟尔
历任:C++高级工程师; 系统架构师;Technical leader; Line Manger;Master通信软件工程师;高级虚拟化工程师;操作系统架构师;OpenHarmony架构师
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
My-Javis 我的智能助手
我的智能助手原创 2025-05-29 22:44:02 · 108 阅读 · 0 评论 -
大模型量化原理
模型量化原创 2025-05-26 23:09:13 · 756 阅读 · 0 评论 -
ASR/TTS model 通过量化提升推理速度
摘要:量化是优化sherpa-onnx ASR和TTS模型性能的高效方法,支持INT8/INT16和动态量化。INT8量化可减少模型大小约75%,提升推理速度2-4倍,精度损失仅1-3%。Whisper、Paraformer等ASR模型和VITS等TTS模型量化后性能显著提升。推荐使用onnxruntime或Intel Neural Compressor工具,从动态量化入手,再根据需求选择静态量化调优。量化适用于嵌入式设备部署,建议优先测试动态INT8量化以获得2-4倍性能提升。(150字)原创 2025-05-26 22:37:56 · 721 阅读 · 0 评论 -
使用arXiv.org上的资源进行学术研究
arXiv.org 是一个专注于物理学、数学、计算机科学、定量生物学、定量金融学和统计学等领域的学术预印本平台,旨在促进科学文献的快速传播与交流。用户可以在该网站上免费获取大量未经同行评审的学术论文预印本,研究人员也常在此分享研究成果以获取反馈。网站覆盖广泛的学科领域,并提供了详细的分类和搜索功能,方便用户追踪最新研究进展。arXiv.org 不仅加速了学术交流,还为科研人员提供了丰富的文献资源,是开展学术研究的重要参考平台。原创 2025-05-23 17:24:43 · 1062 阅读 · 0 评论 -
神经网络极简入门技术分享
本文介绍了神经网络的基本概念和工作原理,旨在帮助初学者理解这一深度学习的基础技术。文章首先阐述了神经网络的组成部分,包括神经元、权重、偏置、激活函数和层结构,并对比了生物神经元与人工神经元的相似性。接着,详细解释了神经元的数学模型和Sigmoid激活函数的作用,并通过Python代码展示了神经元的实现。随后,文章描述了如何从单个神经元构建简单的神经网络,并介绍了神经网络的工作流程和训练方法,特别是随机梯度下降算法。最后,文章通过鸢尾花分类的实际应用示例,展示了神经网络的训练与预测过程,并讨论了神经网络的优势原创 2025-05-10 23:01:13 · 860 阅读 · 0 评论 -
AI部署到扫地机嵌入式系统中(主控芯片:RK3399)的技术方案和代码实现,使用成熟的AI C++框架
选择硬件平台使用瑞芯微的RK3399芯片,该芯片支持AI和VSLAM技术,适合高性能计算需求。安装操作系统和必要软件安装Ubuntu或其他适用于RK3399的Linux发行版。安装OpenCV、ONNX Runtime等AI框架。模型转换和优化将YOLOv8模型转换为ONNX格式,并使用TensorRT进行优化,以提高推理速度和效率。开发视觉识别算法使用OpenCV进行图像处理和YOLOv8进行物体检测。将检测结果用于控制扫地机器人的运动。集成和测试。原创 2024-12-05 10:37:54 · 743 阅读 · 0 评论