基于pytorch搭建多特征LSTM时间序列预测代码

这是一个基于PyTorch的简单多特征LSTM时间序列预测代码示例。假设我们有一个时间序列数据集,它有两个特征(feature1和feature2)。

python
复制代码
import torch  
import torch.nn as nn  
import numpy as np  
from sklearn.model_selection import train_test_split  
from sklearn.preprocessing import MinMaxScaler  
from sklearn.metrics import mean_squared_error  
import matplotlib.pyplot as plt  
  
# 1. 数据预处理  
# 假设我们有如下数据  
data = np.array([  
    [1, 2],  
    [2, 3],  
    [3, 4],  
    [4, 5],  
    [5, 6]  
])  
  
# 添加偏移量以提高预测的准确性  
data = data[:, :-1]  
target = data[:, -1]  
  
# 数据归一化  
scaler = MinMaxScaler()  
data = scaler.fit_transform(data)  
target = scaler.transform(target.reshape(-1, 1))  
  
# 划分训练集和测试集 &

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数字化信息化智能化解决方案

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值