量化小白跟着PyBroker官方文档,一步步编写第一个股票组合回测程序


本文以PyBroker官方文档的示例,一步步完成一个简单的股票组合回测程序。

  • 股票组合: 苹果、微软、特斯拉
  • 回测时间为:2024年一整年
  • 交易策略为:
      1. 做多策略:如果某天的收盘价小于前一天的最低价,就买1/4仓位,持有3天卖出。苹果和微软运用此策略
      1. 做空策略:如果某天的收盘价大于前一天的最高价,就买空100股,持有2天卖出。特斯拉运用此策略

1.安装lib-pybroker包

> pip install -U lib-pybroker

2.导入必要包,并使用数据源缓存

这个回测程序使用雅虎财经作为数据源。使用数据源缓存来确保在运行回测时只下载一次所需的数据。
注: 如要获取A股市场数据可以导入from pybroker.ext.data import AKShare 用 AKShare() 获取数据

import pybroker
from pybroker import Strategy, StrategyConfig, YFinance, ExecContext

pybroker.enable_data_source_cache('my_strategy')

3.创建StrategyConfig对象

我们将初始现金设置为 10,000,,这个对象之后用来配置Strategy对象。

config = StrategyConfig(initial_cash=10000)

4.创建Strategy对象

通过传递以下参数来创建 Strategy 类的新对象: 数据源、开始日期、结束日期和配置对象。

strategy = Strategy(YFinance(), '1/1/2024', '12/31/2024', config)

5.定义交易规则1

  • buy_low 函数将接收一个包含当前股票代码数据的 ExecContext (ctx)。ExecContext 将包含当前股票代码最近 K 线之前的所有收盘价。通过 ctx.close[-1] 获取最新的收盘价。
  • buy_low 函数将使用 ExecContext 来下达买单。购买的股份数量通过 ctx.buy_shares设置,它是通过 ctx.calc_target_shares
要创建一个基础的股票量化交易策略并进行分析,首先需要对量化交易的基本原理有所了解,然后掌握使用Python进行数据分析和交易逻辑编码的技巧。这里推荐您参考《Python量化交易实战教程:策略开发与网盘资源》中的相关章节,它将为您的学习提供全面的指导。 参考资源链接:[Python量化交易实战教程:策略开发与网盘资源](https://wenku.csdn.net/doc/3wzpvnp6yv?spm=1055.2569.3001.10343) 在实现一个简单策略之前,您需要准备一个交易环境,这通常包括获取实时或历史的股票数据,设置一个平台,以及编写策略逻辑。以下是实现流程的几个主要步骤: 1. **数据获取**:从股票市场获取数据是策略开发的第一步。您可以使用如Yahoo Finance、Tushare或自身券商提供的API获取股票历史数据。 2. **策略逻辑编写**:编写策略逻辑是指根据特定的交易规则来决定买卖时机。一个简单策略的例子是移动平均线交叉策略,它通过计算短期和长期移动平均线并监控它们之间的交叉来决定买卖信号。 3. **平台搭建**:选择或编写一个平台来模拟策略在历史数据上的表现。一个好的平台应该允许您设置初始资本、交易费用、滑点等参数。 4. **性能评估**:评估策略性能通常包括计算收益率、最大撤、夏普比率等指标。这些指标能够帮助您判断策略的潜在风险和报。 在Python中,可以使用pandas库来处理数据,numpy库来进行数学计算,matplotlib库进行数据可视化,以及pyalgotrade库进行。以下是实现移动平均线交叉策略的一个简单示例: ```python from pyalgotrade import strategy from pyalgotrade.barfeed import yahoofeed from pyalgotrade.technical import ma class MovingAverageCrossStrategy(strategy.BacktestingStrategy): def __init__(self, feed, short_window, long_window): super(MovingAverageCrossStrategy, self).__init__(feed) self.__short_window = short_window self.__long_window = long_window self.__short_mavg = ma.SMA(feed, self.__short_window) self.__long_mavg = ma.SMA(feed, self.__long_window) self.__register_series(self.__short_mavg) self.__register_series(self.__long_mavg) def on_bar(self, bar): if self.__short_mavg[-1] > self.__long_mavg[-1]: # 买进逻辑 pass elif self.__short_mavg[-1] < self.__long_mavg[-1]: # 卖出逻辑 pass feed = yahoofeed.Feed() feed.addBarsFromCSV( 参考资源链接:[Python量化交易实战教程:策略开发与网盘资源](https://wenku.csdn.net/doc/3wzpvnp6yv?spm=1055.2569.3001.10343)
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

dudly

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值