数学基础:三、动态规划1(求解编辑距离)

本文详细介绍了编辑距离的概念及其在动态规划中的应用,通过具体的Java实现代码,展示了如何计算两个字符串之间的最小编辑距离,适用于算法学习和字符串相似度比较。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

编辑距离的概念,百度一下你就知道。也有很多文章有所介绍
https://blog.csdn.net/chichoxian/article/details/53944188
做动态规划的题就是根据表格,找出规律,推导出状态转移方程
比如编辑距离状态转移方程如下:
d[i+1, j+1] = min(d[i, j+1] + 1, d[i+1, j] + 1, d[i, j] + r(i, j))
下面这个我是用Java实现的:

public class Lesson9_1 {
    public static int getStrDistince(String a, String b) {
        if (a == null || b == null) return -1;

        int aLength = a.length();
        int bLength = b.length();
        int[][] d = new int[aLength + 1][bLength + 1];

        for (int i = 0; i <= aLength; i++) {
            d[i][0] = i;
        }

        for (int j = 0; j <= bLength; j++) {
            d[0][j] = j;
        }

        //d[i+1, j+1] = min(d[i, j+1] + 1, d[i+1, j] + 1, d[i, j] + r(i, j))
        for (int i = 0; i < aLength; i++) {
            for (int j = 0; j < bLength; j++) {
                // d[i, j+1] + 1
                int m = d[i][j + 1] + 1;
                // d[i+1, j] + 1
                int n = d[i + 1][j] + 1;
                int r = a.charAt(i) == b.charAt(j) ? 0 : 1;
                // d[i, j] + r(i, j)
                int k = d[i][j] + r;

                int min1 = Math.min(m, n);
                int min2 = Math.min(min1, k);

                d[i + 1][j + 1] = min2;
            }
        }

        return d[aLength][bLength];
    }

    public static void main(String[] args) {
        int strDistince = getStrDistince("mou", "mouuse");
        System.out.println(strDistince);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值