PLA(Perceptron Learning Algorithm)--机器学习基石笔记

本文深入探讨了解决'是非'问题(二分类问题)的PLA算法及其改进版PocketAlgorithm。重点阐述了算法的核心理论、过程、优缺点,并对比了两者在解决线性可分与线性不可分数据集上的表现。同时,讨论了算法在高维数据集中的应用优势及稳定性问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题:用于解决”是非“问题(二分类问题)
难点:能够正确的把数据分开的线有无线多条
理论:初始任选一条线,每次进行转动一定角度,逐步进行修正和更新,最终找到一条线能够把所有的点正确分类--知错能改算法
算法过程:
(1)初始化一条线,遍历所有数据,进行分类判定
(2)如果找到一个分类错误的数据,则有:
     
(3)修正过程如下,直到所有点都分类正确算法停止:
     
算法会终止条件:数据是线性可分


算法缺点:
(1)只能对线性可分的数据进行正确分类,然而对于线性不可分的数据会导致算法迭代无法停止;当数据线性可分时,算法的迭代时间也无法预期
(2)不同的初始值和更新顺序会导致最终选择的线可能会不同,算法不稳定。
(3)根据选择的线不同,可能会对训练数据过拟合
算法优点:算法简单,适合高维数据


Pocket Algorithm:PLA算法的改进算法,可以用于解决线性不可分的问题。
原理:采用贪婪机制,将到当前为止最好的结果保存在”口袋“里,如果迭代后更优则更新”口袋“,设置算法的停止条件为设定时间和设定迭代次数。
优点:
(1)可以解决线性不可分问题。
(2)时间可以预期,速度快
缺点:
(1)找到的结果可能不是最优解
(2)需要消耗额外的存储空间和计算
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值