adaboost

使用机器学习方法解决问题时,有较多模型可供选择。 一般的思路是先根据数据的特点,快速尝试某种模型,选定某种模型后, 再进行模型参数的选择(当然时间允许的话,可以对模型和参数进行双向选择)

因为不同的模型具有不同的特点, 所以有时也会将多个模型进行组合,以发挥‘三个臭皮匠顶一个诸葛亮的作用’, 这样的思路, 反应在模型中,主要有两种思路: Bagging和Boosting

Bagging

Bagging 可以看成是一种圆桌会议, 或是投票选举的形式,其中的思想是:‘群众的眼光是雪亮的’,可以训练多个模型,之后将这些模型进行加权组合,一般这类方法的效果,都会好于单个模型的效果。 在实践中, 在特征一定的情况下,大家总是使用Bagging的思想去提升效果。 例如kaggle上的问题解决,因为大家获得的数据都是一样的,特别是有些数据已经过预处理。

bagging_ppt

以下为Data Mining Concepts and Techniques 2nd 中的伪代码

bagging

基本的思路比较简单,就是:训练时,使用replacement的sampling方法, sampling一部分训练数据k次并训练k个模型;预测时,使用k个模型,如果为分类,则让k个模型均进行分类并选择出现次数最多的类(每个类出现的次数占比可以视为置信度);如为回归,则为各类器返回的结果的平均值。

在该处,Bagging算法可以认为每个分类器的权重都一样。

Boosting

在Bagging方法中,我们假设每个训练样本的权重都是一致的; 而Boosting算法则更加关注错分的样本,越是容易错分的样本,约要花更多精力去关注。对应到数据中,就是该数据对模型的权重越大,后续的模型就越要拼命将这些经常分错的样本分正确。 最后训练出来的模型也有不同权重,所以boosting更像是会整,级别高,权威的医师的话语权就重些。

以下为Data Mining Concepts and Techniques 2nd 中adaboost伪代码:

adaboost

 

训练时:先初始化每个训练样本的权重相等为1/d  d为样本数量; 之后每次使用一部分训练样本去训练弱分类器,且只保留错误率小于0.5的弱分类器,对于分对的训练样本,将其权重 调整为 error(Mi)/(1-error(Mi)) ,其中error(Mi)为第i个弱分类器的错误率(降低正确分类的样本的权重,相当于增加分错样本的权重);

与测试:每个弱分类器均给出自己的预测结果,且弱分类器的权重为log(1-error(Mi))/error(Mi) ) 权重最高的类别,即为最终预测结果。

在adaboost中,  弱分类器的个数的设计可以有多种方式,例如最简单的就是使用一维特征的树作为弱分类器。

adaboost在一定弱分类器数量控制下,速度较快,且效果还不错。

我们在实际应用中使用adaboost对输入关键词和推荐候选关键词进行相关性判断。随着新的模型方法的出现, adaboost效果已经稍显逊色,我们在同一数据集下,实验了GBDT和adaboost,在保证召回基本不变的情况下,简单调参后的Random Forest准确率居然比adaboost高5个点以上,效果令人吃惊。。。。

Bagging和Boosting都可以视为比较传统的集成学习思路。 现在常用的Random Forest,GBDT,GBRank其实都是更加精细化,效果更好的方法。 后续会有更加详细的内容专门介绍。

参考内容:

Data Mining Concepts and Techniques 2nd

Soft Margin for Adaboost


也可关注我的微博: weibo.com/dustinsea

或是直接访问: http://semocean.com


### AdaBoost算法的实现原理 AdaBoost(Adaptive Boosting)是一种经典的提升(Boosting)算法,最初由Yoav Freund和Robert Schapire于1995年提出[^1]。该算法的核心思想在于通过多次迭代训练多个弱学习器,并根据每次预测的结果调整样本权重,使得后续的学习器更加关注之前被错误分类的样本。 具体来说,AdaBoost的工作流程如下: 1. 初始化数据集中的每个样本权重为相等值。 2. 在每一轮迭代中,基于当前样本权重训练一个弱学习器。 3. 计算弱学习器的误差率以及对应的权重系数α。 4. 更新样本权重,增加那些被误分类样本的权重,减少正确分类样本的权重。 5. 将本轮得到的弱学习器加入到最终模型中,形成加权投票机制。 6. 循环上述过程直到达到预设的最大迭代次数或满足其他停止条件。 这种逐步改进的过程能够有效提高整体模型的表现能力。 ```python from sklearn.ensemble import AdaBoostClassifier from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split # 创建模拟数据集 X, y = make_classification(n_samples=1000, n_features=20, n_informative=2, n_redundant=10, random_state=42) # 划分训练集与测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42) # 构建AdaBoost分类器,默认基估计器为决策树桩 ada_clf = AdaBoostClassifier(n_estimators=50, learning_rate=1.0, random_state=42) # 模型拟合 ada_clf.fit(X_train, y_train) # 输出模型得分 print(f"Training Accuracy: {ada_clf.score(X_train, y_train)}") print(f"Test Accuracy: {ada_clf.score(X_test, y_test)}") ``` 以上代码展示了如何利用`scikit-learn`库快速构建并评估一个简单的AdaBoost分类器[^2]。 ### 使用案例分析 AdaBoost在实际应用中有许多成功案例,尤其是在二分类问题上表现出色。例如,在金融领域可以用于信用评分;在医疗诊断方面可用于疾病检测;另外还常见于图像处理任务如人脸识别等领域。由于其灵活性高且易于扩展至多类别的场景下工作,因此具有广泛的适用范围。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值