全文共9442字,预计学习时长24分钟
图源:unsplash
2020年1月,我发表了一篇名为《15分钟内破解Facebook广告》的文章,分享了2012至2019年我就职于Facebook7年间的工作方法与案例。
我最初写这篇文章其实是为了避免谈广告,因为各种朋友和创始人都找我咨询,最好能一文了结所有事。但事实相反,我发现自己与新风险投资人、直接对消费者(DTC)品牌、电商和代理公司创始人对话的比以前还更多,尤其是关于Facebook直接回应(DR)广告的对话。
第一篇文章的主旨很简单:用Facebook所倡导运用的方式,即用最新的原始内容为用户带去真正的价值,并运行极具流动性的广告活动,发挥新的机器学习能力的作用。
但我与各类人的谈话中一直有个难点:如何快速、实惠地生成和测试各种高质量的Facebook和Instagram直接回应的广告?最近,Facebook数据团队从163个活动中获得的元分析数据证明,测试和学习是有效的。
听了广告商的问题后,我意识到只有机器生成内容(MGC)才能突破这个素材瓶颈,于是我联系了一家由红杉投资的新加坡创业公司——Pencil。为什么叫Pencil?因为联合创始人Will Hanschell和Sumukh Avadhani认为,人工智能在未来会像以前的铅笔一样成为创意之根本。
他们耐心地向我解释了下面的机器学习论文。设计学习系统来实现广告支出回报率(ROAS)目标,Pencil需要把所有的东西都建立在一个MGC的自助平台上,还应:
· 使用高级语言模型生成强大的标题和产品描述。
· 将品牌宣传片和有影响力的视频分解为原子化的短片段。
· 使用兴趣区域技术,生成数十种格式的新Facebook广告。
· 在数百个可学习的功能中,了解生成广告的“内涵”。
· 根据预测结果对广告进行排名。
· 将新广告批量推送到Facebook广告管理器中。
· 收集相对于客观和受众而言高保真的活动表现信号。
· 利用该信号训练人工智能,不断迭代出更好的广告。
因为Pencil是从标签化、原子化的短片段中生成广告,并得到一个强大、快速的信号,只有这样才可能准确地生成和预测结果。
他们给我看的第一批MGC广告已经很强大了,而且每周都在改进,创意人工智能的时代显然已经到来,我想要占得先机。所以在一周之内,我放下了手头上的事情来帮助构建和测试Pencil。一个月内,我们就有一些世界顶级的绩效营销人员加入,有15个美国DTC品牌在直播中测试了广告。
图源:unsplash
这篇文章涵盖了我迄今为止与用户获取团队、人工智能工程师和Facebook内部团队合作的经验,共有三个章节:
· 为什么人类在生成Facebook广告方面会失败?
· 为什么机器做得更好?
· 广告商如何从现在开始?
但首先,我要先说几个观点:
· 新型冠状病毒让许多必然的商业趋势提前了十年。现在的创意开发几乎都是远程操作的,而且越来越自动化。
· 关于人工智能有很多是炒作,尤其是在2020年7月之后,专家评审员评审了OpenAI的GPT-3(一个强大的语言生成工具,能够按需生成类似人类的文本)。炒作想象着未来,但本文将聚焦于当下真实的MGC商业机会。
· DR正在吞噬品牌广告。在Facebook上, DR广告仍然超出品牌广告约4倍之多。最好的广告取决于日常DR指标、ROAS、CPA、CTR,同时强化品牌。有理论提出,特朗普在2016年击败了希拉里,是因为其竞选团队开展DR广告来筹集资金,而克林顿的竞选团队则试图开展品牌广告。就连Instagram为了寻求灵感,现在也允许一键购物。
· MGC将影响所有创意领域,但它将首先在Facebook和Instagram上经受锤炼。广告拍卖由测试工具和快速、精细的信号驱动,其市场价值接近1000亿美元。通过将大部分数据或机器学习纳入自己的原始工具中,创意现在仍是Facebook希望能拉动企业发展的少数杠杆之一。
· 这篇文章不涉及Facebook商业模式的政治和道德层面的问题,也不谈AI取代人类工作的潜力。虽然这些领域我很感兴趣,但与本文主题无关。我只想说,我相信人类+机器就是超级人类,我告诉自己的孩子,如果他们想在未来找到工作,就要学会写代码(可是他们不听我的)。
· 根据尼尔森的数据,50%以上的广告绩效由创意选择驱动,然而创始人和CEO们通常只花很少时间来提高产出。
Facebook创意商店团队幻灯片摘要
<