主要功能:
1.可视化模型的网络架构
2.跟踪模型指标,loss或者准确率等等
3.检查权重,偏差
4,现实非表格数据
5,将高维嵌入投影到低维空间
import numpy as np
from torch.utils.tensorboard import SummaryWriter
from numpy import nanprod
from PIL import Image
writer =SummaryWriter("logs")
image_path ="dataset/train/ants/5650366_e22b7e1065.jpg"
img_PIL =Image.open(image_path)
img_array =np.array(img_PIL)
print(type(img_array))
print(img_array.shape)
writer.add_image("test",img_array,2,dataformats='HWC')
# y =x
for i in range(100):
writer.add_scalar("y=2x", 3*i, i)
writer.close()
writer.add_image()
在终端输入:tensorboard --logdir=logs.命令将启动TensorBoard服务器,您可以通过浏览器访问 http://localhost:600* 给出的端口号不同别乱复制来查看TensorBoard界面和其中的图像网格。