DAY3 PYtorch入门-tensorboard函数

主要功能:

1.可视化模型的网络架构

2.跟踪模型指标,loss或者准确率等等

3.检查权重,偏差

4,现实非表格数据

5,将高维嵌入投影到低维空间

import numpy as np
from torch.utils.tensorboard import SummaryWriter
from numpy import nanprod
from PIL import  Image

writer =SummaryWriter("logs")
image_path ="dataset/train/ants/5650366_e22b7e1065.jpg"
img_PIL =Image.open(image_path)
img_array =np.array(img_PIL)
print(type(img_array))
print(img_array.shape)


writer.add_image("test",img_array,2,dataformats='HWC')
# y =x
for i in range(100):
    writer.add_scalar("y=2x", 3*i, i)

writer.close()

writer.add_image()

在终端输入:tensorboard --logdir=logs.命令将启动TensorBoard服务器,您可以通过浏览器访问 http://localhost:600* 给出的端口号不同别乱复制来查看TensorBoard界面和其中的图像网格。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值