并行算法在服务优化与安全验证中的应用
在当今的计算领域,高效的算法和安全的服务是两个至关重要的方面。本文将深入探讨并行全局搜索算法在支持向量机(SVM)回归参数优化中的应用,以及一种形式化的合同理论在服务合规性和安全性验证中的作用。
并行全局搜索算法优化SVM回归参数
在解决SVM回归参数优化问题时,传统的全搜索方法在均匀网格上达到指定精度需要大量迭代。例如,解决给定问题时,全搜索需要104次迭代,而使用考虑的全局搜索算法进行最优搜索所需的迭代次数则少得多。该全局搜索算法有三种实现方式(实现1 - 3),均在400次迭代后达到所需精度,得到的最优值分别为0.090543、0.090564和0.09054。
以下是不同实现方式的算法运行时间表格:
| 实现方式 | 扫描次数 | 每次扫描的核心数 | 时间(小时) |
| — | — | — | — |
| 1 | 3 | 1 | 2.4 |
| 2 | 3 | 1 | 2.4 |
| 3 | 3 | 2 | 1.2 |
| 3 | 3 | 4 | 0.6 |
从表格中可以看出,实现3在使用两倍核心数的情况下,性能比其他实现方式提高了2倍。这是因为实现1和2在并行使用计算设备的能力上受到很大限制,而实现3(每个核心的计算时间相同)允许使用更多的集群节点,从而减少了计算时间。
在优化三变量函数时,实验在Nizhni Novgorod大学的集群上进行。在这一系列实验中,最优搜索的精度(沿坐标)为ρ = 0.02,进行1000次迭代即可达到所需的搜索精度。考虑到扫描次数受N(N - 1) + 1限制(N = 3为问题维度),对算法进行了不同