基于自然启发算法的图像重建与行人渗透分析
1. 图像重建相关研究
在图像重建领域,利用遗传算法(GA)搜索细胞自动机(CA)规则是一种新颖的方法。其核心目标是找到合适的规则,使CA能够将受损图像尽可能恢复到原始状态。
1.1 基本概念
- 邻域向量 :对于给定的邻域,向量按从左到右、从上到下的顺序读取值,例如235082811。并且对于每个可能的邻域,都给出了该邻域中心细胞在下一个时间步的状态值。
- 适应度函数 :个体的适应度通过公式 (f = \frac{n_c - (n_d + n_i)t}{n}) 计算。其中,(n_c) 是具有正确状态的细胞数量,(n_d) 是对应受损像素的细胞数量,(n_i) 是状态错误但像素未受损的细胞数量,(t) 是系数,(n) 是所有细胞的数量。GA的目标是找到能使重建图像中具有原始颜色像素数量最多的规则。
1.2 训练阶段
训练阶段的主要任务是通过GA寻找规则。具体步骤如下:
1. 展示原始图像并创建对应的CA。
2. 生成大小为 (P) 的CA规则初始种群。
3. 生成原始图像 (p\%) 受损像素的图像。
4. 对种群中的每个规则执行以下操作:
- 运行CA (T) 个时间步。
- 计算适应度函数值。
5. 进行 (G) 代迭代:
- 从当前种群中有放回地随机选择 (P) 个规则。
- 将选择的 (P) 个规则分成不相交的对。
- 通过单点交叉对每对规则进行交叉操作。