leetcode.127.单词接龙

本文介绍了一个经典的单词接龙问题,通过广度优先搜索算法寻找两个单词间的最短转换路径。文章详细展示了两种Java实现方式,并提供了完整的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

127.单词接龙

给定两个单词(beginWordendWord)和一个字典,找到从 beginWordendWord 的最短转换序列的长度。转换需遵循如下规则:

  1. 每次转换只能改变一个字母。
  2. 转换过程中的中间单词必须是字典中的单词。

说明:

  • 如果不存在这样的转换序列,返回 0。
  • 所有单词具有相同的长度。
  • 所有单词只由小写字母组成。
  • 字典中不存在重复的单词。
  • 你可以假设 beginWordendWord 是非空的,且二者不相同。

示例 1:

输入:
beginWord = "hit",
endWord = "cog",
wordList = ["hot","dot","dog","lot","log","cog"]

输出: 5

解释: 一个最短转换序列是 "hit" -> "hot" -> "dot" -> "dog" -> "cog",
     返回它的长度 5。

示例 2:

输入:
beginWord = "hit"
endWord = "cog"
wordList = ["hot","dot","dog","lot","log"]

输出: 0

解释: endWord "cog" 不在字典中,所以无法进行转换。

代码与思路

代码一

class Solution {
    public int ladderLength(String beginWord, String endWord, List<String> wordList) {
        // 先将 wordList 放到哈希表里,便于判断某个单词是否在 wordList 里
        Set<String> wordSet = new HashSet<>(wordList);
        if (wordSet.size() == 0 || !wordSet.contains(endWord)) {
            return 0;
        }
        wordSet.remove(beginWord);

        // 图的广度优先遍历,必须使用的队列和表示是否访问过的 visited (数组,哈希表)
        Queue<String> queue = new LinkedList<>();
        queue.offer(beginWord);

        Set<String> visited = new HashSet<>();
        visited.add(beginWord);

        int wordLen = beginWord.length();
        // 包含起点,因此初始化的时候步数为 1
        int step = 1;
        while (!queue.isEmpty()) {

            int currentSize = queue.size();
            for (int i = 0; i < currentSize; i++) {
                // 依次遍历当前队列中的单词
                String word = queue.poll();
                char[] charArray = word.toCharArray();

                // 修改每一个字符
                for (int j = 0; j < wordLen; j++) {
                    // 一轮以后应该重置,否则结果不正确
                    char originChar = charArray[j];

                    for (char k = 'a'; k <= 'z'; k++) {
                        if (k == originChar) {
                            continue;
                        }

                        charArray[j] = k;
                        String nextWord = String.valueOf(charArray);

                        if (wordSet.contains(nextWord)) {
                            if (nextWord.equals(endWord)) {
                                return step + 1;
                            }

                            if (!visited.contains(nextWord)) {
                                queue.add(nextWord);
                                // 注意:添加到队列以后,必须马上标记为已经访问
                                visited.add(nextWord);
                            }
                        }
                    }
                    // 恢复
                    charArray[j] = originChar;
                }
            }
            step++;
        }
        return 0;     
    }
}

代码二

package word_ladder;

import java.util.ArrayList;
import java.util.Collections;
import java.util.HashSet;
import java.util.LinkedList;
import java.util.List;
import java.util.Queue;
import java.util.Set;

/**
 * 广度优先搜索,这里拿例子一来举例
 */
public class Solution3 {

    public int ladderLength(String beginWord, String endWord, List<String> wordList) {
        // 第 1 步:先将 wordList 放到哈希表里,便于判断某个单词是否在 wordList 里
        Set<String> wordSet = new HashSet<>(wordList);
        if (wordSet.size() == 0 || !wordSet.contains(endWord)) {
            return 0;
        }
        wordSet.remove(beginWord);
        
        // 第 2 步:图的广度优先遍历,必须使用队列和表示是否访问过的 visited 哈希表
        Queue<String> queue = new LinkedList<>();
        queue.offer(beginWord);
        Set<String> visited = new HashSet<>();
        visited.add(beginWord);
        
        // 第 3 步:开始广度优先遍历,包含起点,因此初始化的时候步数为 1
        int step = 1;
        while (!queue.isEmpty()) {
            int currentSize = queue.size();
            for (int i = 0; i < currentSize; i++) {
                // 依次遍历当前队列中的单词
                String currentWord = queue.poll();
                // 如果 currentWord 能够修改 1 个字符与 endWord 相同,则返回 step + 1
                if (changeWordEveryOneLetter(currentWord, endWord, queue, visited, wordSet)) {
                    return step + 1;
                }
            }
            step++;
        }
        return 0;
    }

    /**
     * 尝试对 currentWord 修改每一个字符,看看是不是能与 endWord 匹配
     *
     * @param currentWord
     * @param endWord
     * @param queue
     * @param visited
     * @param wordSet
     * @return
     */
    private boolean changeWordEveryOneLetter(String currentWord, String endWord,
                                             Queue<String> queue, Set<String> visited, Set<String> wordSet) {
        char[] charArray = currentWord.toCharArray();
        for (int i = 0; i < endWord.length(); i++) {//-----注意,所有单词长度是一样的,如果len=3,这里遍历3*26次
            // 先保存,然后恢复
            char originChar = charArray[i];//----------------拿出[h,i,t]中的h
            for (char k = 'a'; k <= 'z'; k++) {
                if (k == originChar) {//----------------拿出[h,i,t]中的h
                    continue;
                }
                charArray[i] = k;//--------------------------将[h,i,t]变为[a,i,t]
                String nextWord = String.valueOf(charArray);//----得到ait,
                if (wordSet.contains(nextWord)) {//----------直到第二轮[h,o,t]进来
                    if (nextWord.equals(endWord)) {
                        return true;
                    }
                    if (!visited.contains(nextWord)) {//----------[h,o,t]有没有访问过,没有就加入队列,同时标记为已访问
                        queue.add(nextWord);
                        // 注意:添加到队列以后,必须马上标记为已经访问
                        visited.add(nextWord);
                    }
                }
            }
            // 恢复
            charArray[i] = originChar;//明显,第一轮的26次都不对,还原
        }
        return false;
    }
    
    public static void main(String[] args) {
        String beginWord = "hit";
        String endWord = "cog";
        List<String> wordList = new ArrayList<>();
        String[] wordListArray = new String[]{"hot", "dot", "dog", "lot", "log", "cog"};
        Collections.addAll(wordList, wordListArray);
        Solution3 solution = new Solution3();
        int res = solution.ladderLength(beginWord, endWord, wordList);
        System.out.println(res);
    }
    
}

转自liweiwei1419

例子一
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值