
机器学习
文章平均质量分 92
元素魔方科研服务
需要做材料测试、模拟计算、生物实验、耗材采购、服务器搭建的小伙伴们可以薇小助理:jia009077
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
机器学习在科研领域的应用与未来趋势:机器学习第一性原理+分子动力学
随后,他们以物理描述符(如前驱体性质)为输入特征,训练了一个人工神经网络(ANN)模型,预测MTMCs的机械性能,包括体积模量(B)、剪切模量(G)、杨氏模量(E)和维氏硬度(H_v)。结合了密度泛函理论(DFT)和机器学习(ML)技术,旨在探索掺杂元素对铪氧化物(HfO2)基铁电材料的影响。研究团队开发了一种高效的力矩张量潜力(MTP),通过在线主动学习方法训练,结合高级采样技术,从分子动力学轨迹中迭代选择代表性构型进行DFT计算,确保训练数据集(3775个96原子结构)覆盖相关相空间。原创 2025-03-14 16:25:12 · 1199 阅读 · 0 评论 -
AI在蛋白质结构预测和设计中的应用
2020年,AlphaFold 2发布,引入了自然语言处理中常用的注意力机制,用来考量蛋白质序列中关键残基的效应,同时攻克了从线性氨基酸链卷曲成三维结构的难题,极大地提高了预测的精确性。通过深度学习模型的强大能力,科学家能够以空前的速度和精度设计出功能强大的蛋白质分子,这标志着蛋白质设计的未来充满了希望。这一突破引起了科学界的广泛关注。Backbone Encoder(骨架编码器):这一部分对输入的节点数据进行处理,并更新节点和边的信息,通过重复3次的处理步骤来提取特征,优化蛋白质结构的信息。原创 2025-03-25 18:36:43 · 1725 阅读 · 0 评论