YOLOv5改进(CoordConv)

文章介绍了一种名为CoodConv的新方法,它通过在卷积层中添加输入的i、j坐标信息来改进网络性能。具体实现是在模型的common.py文件中定义了一个AddCoords类,然后在yolo.py的parse_model中应用了CoordConv层。该方法通过引入位置信息,提高了网络对图像位置特征的学习能力,适用于目标检测等任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.CoodConev原文地址:

 https://arxiv.org/pdf/1807.03247v2.pdf

2.改进策略,在原有卷积上增加了i、j坐标

3.方法:

(1)将下面代码放到models/commen.py中

lass AddCoords(nn.Module):

    def __init__(self, with_r=False):
        super().__init__()
        self.with_r = with_r

    def forward(self, input_tensor):
        """
        Args:
            input_tensor: shape(batch, channel, x_dim, y_dim)
        """
        batch_size, _, x_dim, y_dim = input_tensor.size()

        xx_channel = torch.arange(x_dim).repeat(1, y_dim, 1)
        yy_channel = torch.arange(y_dim).repeat(1, x_dim, 1).transpose(1, 2)

        xx_channel = xx_channel.float() / (x_dim - 1)
### 如何优化 YOLOv8 的 Conv 卷积层 #### 使用 CoordConv 替换传统 Conv 为了使卷积层能更好地处理需要空间感知的任务,可以采用 CoordConv 来替代传统的 Conv 层。这种改动不仅简单而且强大,通过向输入特征图中嵌入显式的坐标信息,使得模型能够更加高效地学习空间变换,进而提升不同应用场景下的表现效果[^1]。 ```python import torch.nn as nn class CoordConv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0): super(CoordConv, self).__init__() self.conv = nn.Conv2d(in_channels + 2, out_channels, kernel_size, stride, padding) def forward(self, x): b, _, h, w = x.size() xx_channel = torch.arange(w).repeat(1, h, 1) yy_channel = torch.arange(h).repeat(1, w, 1).transpose(1, 2) xx_channel = xx_channel.float() / (w - 1) yy_channel = yy_channel.float() / (h - 1) xx_channel = xx_channel * 2 - 1 yy_channel = yy_channel * 2 - 1 repeat_shape = [b, 1, 1, 1] xx_channel = xx_channel.unsqueeze(0).unsqueeze(0).repeat(repeat_shape) yy_channel = yy_channel.unsqueeze(0).unsqueeze(0).repeat(repeat_shape) ret = torch.cat([x, xx_channel, yy_channel], dim=1) return self.conv(ret) ``` #### 引入 ODConv 提升检测精度 另一种有效的改进方法是在 YOLOv8 中集成 ODConv 卷积操作。ODConv 能够增强目标检测的效果,有助于提高模型的整体性能指标。这种方法特别适用于那些追求更高准确度的应用场景[^2]。 #### 应用 OREPA 进一步强化网络结构 除了上述两种方式外,还可以考虑利用 OREPA 技术来加强 YOLOv8 架构中的卷积部分。具体来说就是调整配置文件 `yolov8_OREPA.yaml` 并按照给定参数设置进行训练,以此达到更好的识别能力[^3]。 ```yaml # cfg/models/v8/yolov8_OREPA.yaml snippet backbone: ... block: RepVGGBlock # Use RepVGG blocks instead of standard ones. neck: type: 'RepBiFPN' head: ... act: SiLU ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值