关于矩阵微分的形状的简单说明-Jacobian form和Shape Convention

本文探讨了给定函数f从Rn×1到R的微分,即∂f/∂x,在Jacobian形式下为行向量,便于chainrule推导;在ShapeConvention下为列向量,利于神经网络迭代更新。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给定函数f:Rn×1→Rf:\mathbb{R}^{n \times 1} \rightarrow \mathbb{R}f:Rn×1R,对函数f(x)f(\mathbf{x})f(x)求微分,即∂f/∂x\partial{f}/\partial{\mathbf{x}}f/x究竟是一个行向量还是一个列向量呢?
个人理解,矩阵微分的关键仍然是对矩阵中的各个分量微分值,至于微分后组成什么形状,取决于不同应用场景下的convention。常见的有两种:即Jacobian form和Shape convention。
在Jacobian form下,∂f/∂x\partial{f}/\partial{\mathbf{x}}f/x是一个行向量。原因在于采用这种方式,利用chain rule推导微分比较方便。
在Shape convention下,∂f/∂x\partial{f}/\partial{\mathbf{x}}f/x是一个列向量。采用这个方式,用梯度法对x\mathbf{x}x进行更新时,可以不用转置,因此神经网络采用迭代时应用较多。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值