如何在无 GPU 的 macOS 上运行深度学习文本生成图片模型​ Stable Diffusion

公众号关注 「奇妙的 Linux 世界」

设为「星标」,每天带你玩转 Linux !

96437237d77b6aa3e567f6e2c2e6535f.png

1. 运行 Stable Diffusion 推荐配置

  • 内存: 不低于 16 GB DDR4 或 DDR5

  • 存储: 不低于 10 GB 可用空间

  • GPU: 不低于 6 GB 显存 N 卡

如果硬件达不到要求,也可以使用各种优化 fork 兼容更低配置的硬件,但生成时间会增长。

当前的开发主机配置为:

  • 2.9 GHz 8-Core Intel Core i7

  • 16 GB 2666 MHz DDR4

  • 250 GB SSD

由于没有 GPU,生成图片时,需要多等待一会儿。

2. macOS 上运行 Stable Diffusion

  • 安装 anaconda

brew install --cask anaconda
  • 配置 PATH

echo 'export PATH=/usr/local/anaconda3/bin:$PATH' >> ~/.zshrc
  • conda 初始化 Shell

conda init zsh

这里需要关闭窗口,重新登录 Terminal。

  • 下载并进入项目目录

git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui
cd stable-diffusion-webui
  • 创建 Python 环境

conda create -n stabel python=3.10.6
  • 激活 Python 环境,并安装依赖

conda activate stabel 
pip3 install -r requirements_versions.txt
  • 下载模型

前往 https://huggingface.co/CompVis/stable-diffusion-v-1-4-original 下载 sd-v1-4.ckpt 或者 sd-v1-4-full-ema.ckpt 文件,放置到 models/Stable-diffusion ⽬录下。huggingface 上也有很多其他模型可以下载使用,也能在线体验。比如 https://huggingface.co/spaces/IDEA-CCNL/Taiyi-Stable-Diffusion-Chinese 。

  • 修改运行参数,跳过 GPU 检测,参考[1]

export COMMANDLINE_ARGS="--lowvram --precision full --no-half --skip-torch-cuda-test"
  • 运行项目

python launch.py

在本地访问 http://127.0.0.1:7860 即可打开 UI。

3. Text-to-Image 测试

Prompt 有很多的撰写技巧、句式、修饰词;Stable Diffusion 也有很多参数可以调整。但本篇主要描述的是在无 GPU 情况下,在 macOS 下运行 Stable Diffusion,因此在此仅输入 bird ,进行测试。生成的图片如下图:

2cc3d54bd65c892a4abda1d5127b7df1.png

4. 参考

  1. https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/1742

本文转载自:「陈少文」,原文:https://url.hi-linux.com/1FYku,版权归原作者所有。欢迎投稿,投稿邮箱: editor@hi-linux.com。

a5faba9aa3e628f722957f96f54e61a7.gif

最近,我们建立了一个技术交流微信群。目前群里已加入了不少行业内的大神,有兴趣的同学可以加入和我们一起交流技术,在 「奇妙的 Linux 世界」 公众号直接回复 「加群」 邀请你入群。

ca60280965d91f8a53308140ae3ae575.png

你可能还喜欢

点击下方图片即可阅读

813f128b92e0c0a4ca3decf06dc95574.png

Kubecolor: 一款超实用的 Kubernetes 高亮输出工具,给你 Kubectl 加点色彩

b91029b96570e8e159230f040099eabb.png
点击上方图片,『美团|饿了么』外卖红包天天免费领

d05ec1188f09557b576812f1f85d7b3f.png

更多有趣的互联网新鲜事,关注「奇妙的互联网」视频号全了解!

macOS Monterey 上安装 Stable Diffusion 可以通过命令行或使用整合包的方式实现。以下是一个基于命令行的安装指南,适合希望深入了解运行机制的用户。如果更倾向于图形界面,可以考虑 SD WebUI(Stable Diffusion Web UI)。 ### 安装前准备 1. **安装 Homebrew** 如果尚未安装 Homebrew,请打开终端并执行以下命令: ```bash /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)" ``` 2. **安装 Python 3.10 或更高版本** Stable Diffusion 推荐使用 Python 3.10 或更新版本: ```bash brew install python@3.10 ``` 3. **安装 Git** ```bash brew install git ``` 4. **安装 Xcode 命令行工具** ```bash xcode-select --install ``` ### 下载 Stable Diffusion 项目文件 ```bash git clone https://github.com/CompVis/stable-diffusion.git cd stable-diffusion ``` ### 创建虚拟环境并安装依赖 ```bash python3 -m venv venv source venv/bin/activate pip install --upgrade pip pip install torch torchvision torchaudio pip install -e . ``` ### 下载模型权重 前往 [LAION 数据集页面](https://laion.ai/blog/) 或其他提供预训练模型的网站下载 Stable Diffusion模型权重文件(如 `model.ckpt`)。将该文件放置在项目目录下的 `models/ldm/stable-diffusion-v1/` 文件夹中。 ### 运行 Stable Diffusion 确保你已经激活了虚拟环境,并进入项目主目录后执行: ```bash python scripts/txt2img.py --prompt "a fantasy landscape" --plms --log_dir ./outputs/ ``` 此命令将根据提示词生成图像并保存到 `./outputs/` 目录下。 ### 使用 SD WebUI(推荐) 对于不想处理复杂命令行操作的用户,推荐使用 **Stable Diffusion WebUI**,这是一个带有图形界面的交互式工具,极大简化了图像生成流程。可以从 GitHub 获取该项目并按照说明进行安装[^2]。 ### 注意事项 - 确保你的系统满足最低硬件要求,尤其是 GPU 支持 CUDA 计算能力。 - 若遇到性能问题,可尝试降低图像分辨率或调整采样步骤。 - 在 macOS运行时,可能需要额外配置 Metal Performance Shaders (MPS) 以提升推理速度[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值