
jvm
文章平均质量分 92
浮生夢
当有一天,有星光刺破黑洞的昏暗,那是我吞吐天地的余晖,代表着我已映照诸天。当有一天,有玄雷划过星空的浩瀚,那是我拳光的劲风,代表着我已回来。当星河列阵,宇宙星海星光齐绽,那是我在笑,我已复苏,我在归来,我已无敌!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
JVM 调优
一,JVM参数大部分的情况都是由于企业内部代码逻辑不合理导致。JVM内部性能优化栈上分配方法内联JVM的自适应调整JVM改错大并发内存不足OOM 内存泄漏GC频繁CPU飙升JVM的调优的原则是让你各项指标尽可能的利用到你硬件的性能瓶颈。JVM的性能优化可以分为代码层面和非代码层面。在代码层面,大家可以结合字节码指令进行优化,比如一个循环语句,可以将循环不相关的代码提 取到循环体之外,这样在字节码层面就不需要重复执行这些代码了。原创 2023-04-26 13:11:39 · 725 阅读 · 0 评论 -
JVM 垃圾收集器
Parallel Scavenge收集器是一个新生代收集器,它也是使用复制算法的收集器,又是并行的多线程收集器看上去和ParNew一样,但是Parallel Scanvenge更关注系统的。由于整个过程中,并发标记和并发清除,收集器线程可以与用户线程一起工作,所以总体上来说, CMS收集器的内存回收过程是与用户线程一起并发地执行的。它是一种单线程收集器,不仅仅意味着它只会使用一个CPU或者一条收集线程去完成垃圾收集工作,更重要的是其在进行垃圾收集的时候需要暂停其他线程。原创 2023-04-25 15:53:28 · 537 阅读 · 0 评论 -
JVM 垃圾回收算法
之前说堆内存中有垃圾回收,比如Young区的Minor GC,Old区的Major GC,Young区和Old区 的Full GC。但是对于一个对象而言,怎么确定它是垃圾?对于某个对象而言,只要应用程序中持有该对象的引用,就说明该对象不是垃圾,如果一个对象没有任 何指针对其引用,它就是垃圾。标记-清除算法分为“标记”和“清除”两个阶段,首先通过可达性分析,标记出所有需要回收的对象,然后统一回收所有被标记的对象。们很难进行排查和解决,自动垃圾回收机制就是寻找Java堆中的对象,并对对象进行分类判别,原创 2023-04-25 15:19:23 · 617 阅读 · 3 评论 -
JVM 关键点详解
JVM包含两个子系统和两个组件,两个子系统为Class loader(类装载)、Execution engine(执行引擎);两个组件为Runtime data area(运行时数据区)、Native Interface(本地接口)。Class loader(类装载): 根据给定的全限定名类名(如: java.lang.Object)来装载class文件到Runtime data area中的method area。Execution engine (执行引擎) : 执行classes中的指令。原创 2023-04-23 17:27:56 · 537 阅读 · 0 评论 -
浅谈双亲委派模型
本文浅析了双亲委派的基本概念、实现原理、和自定义类加载器的正确姿势。对于更细致的加载loading过程、初始化initialization顺序等问题,文中暂不涉及,后面整理笔记时有相应的文章。JDK版本:oracle java 1.8.0_102基本概念定义双亲委派模型要求除了顶层的启动类加载器外,其余的类加载器都应当有自己的父类加载器。双亲委派模型的工作过程是:如...转载 2019-04-29 11:54:49 · 1093 阅读 · 0 评论 -
java并发内存模型以及内存操作规则
java内存模型中规定了所有变量都存贮到主内存(如虚拟机物理内存中的一部分)中。每一个线程都有一个自己的工作内存(如cpu中的高速缓存)。线程中的工作内存保存了该线程使用到的变量的主内存的副本拷贝。线程对变量的所有操作(读取、赋值等)必须在该线程的工作内存中进行。不同线程之间无法直接访问对方工作内存中变量。线程间变量的值传递均需要通过主内存来完成。关于主内存与工作内存之间的交互协议,即一个...原创 2019-05-20 21:43:09 · 331 阅读 · 0 评论 -
java线程池
什么是线程池线程池内部是一个生产者-消费者模型:用户是生产者。提交任务(task)相当于生产产品。 线程池中的线程(worker)是消费者,执行任务相当于消费产品。线程池的种类可通过Executors中的静态工厂方法创建不同特点的线程池,包括:FixedThreadPool:维持固定nThreads个线程的线程池;使用无界的异步阻塞队列LinkedBlockingQueue作为...原创 2019-05-29 15:17:08 · 322 阅读 · 0 评论