决策树算法——拟合优化

本文介绍了决策树算法的原理,包括CART和ID3算法,并探讨了如何寻找决策树的最优参数。通过泰坦尼克号数据集,展示了手动调整和使用内置函数确定最佳树深度的过程,得出深度为3时的决策树具有较好的拟合效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、决策树算法原理

上一篇文章简单、直接、粗暴的使用了决策树算法对鸢尾花数据集进行分类,关于决策树算法的原理,以我的理解:就是用能最大概率的区分不同类别标签的特征值作为分裂节点。

常用的算法是:CART 和 ID3 算法。

CART 算法采用gini系数最小的来决定使用哪种特征来进行分裂;
ID3算法采用信息增益最大的特征来决定使用哪种特征来进行分裂;

二、决策树的最优参数

这次的数据集使用稍微复杂一点的泰坦尼克号预测生死的数据。
重复的代码不啰嗦,直接上

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

data=pd.read_csv(r'data.csv',index_col=0)
data.drop(['Cabin','Name','Ticket','Embarked'],inplace=True,axis=1)
data['Age']=data['Age'].fillna(data['Age'].mean())
data=data.dropna()
data['Sex']=data[
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值