机器学习与知识发现:原理、算法与应用
1. 机器学习概述
机器学习(ML)作为人工智能的一个重要分支,通过系统地应用算法来揭示数据和信息之间的潜在关系。它已经在众多领域得到了广泛应用,如网络搜索、广告投放、信用评分、股票市场预测等。ML 的核心优势在于能够处理大规模数据,从中发现潜在模式,以解决大数据分析、行为模式识别和信息演化等问题。
1.1 机器学习的定义与目标
- 定义 :1959 年,Arthur Samuel 将机器学习描述为“让计算机在无需明确编程的情况下具备学习能力的研究领域”。Tom M. Mitchell 则定义为:“若计算机程序在任务 T 上的表现(由性能指标 P 衡量)能随着经验 E 的增加而提升,则称该程序从经验 E 中学习”。
- 目标 :预测计算机未知的未来事件或场景。通过对训练数据的学习,ML 系统能够输出一个估计目标函数的假设,利用泛化能力对未知数据进行准确预测。
1.2 机器学习的特点与优势
- 泛化能力 :ML 系统能够将训练经验推广到未见过的数据实例上,通过准确预测未来数据来实现良好的性能。
- 处理复杂数据 :面对大数据的高容量、多样性和高速度,ML 能够处理复杂的数据结构,发现其中的潜在模式和信息。
- 自适应学习 :随着知识体系的演变,ML 系统可以识别现有模型的中断,重新设计和训练自己,以适应新知识并与之共同进化。