17、深度神经网络技术解析

深度神经网络技术解析

1. 神经网络简介

人工神经网络(ANN)自20世纪40年代被提出以来,一直是活跃的研究领域。它被作为人类皮层中基本计算单元的简化模型,在许多实际应用中取得了成功,尤其是在监督学习模式下。然而,ANN也面临着一些显著的挑战和不足。
- 挑战与不足
- 维度灾难 :在监督学习中,当特征和训练点的数量显著增加时,会出现维度灾难,这使得处理大数据时,ANN学习变得更加困难,因为需要处理大量的数据,对内存和计算能力要求极高。
- 数据非线性 :在分类任务中,不同类别的特征重叠导致的数据非线性,使得区分不同类别变得更加困难。
- 架构选择 :选择合适的网络架构采用启发式方法,这使得ANN在20世纪90年代和21世纪初落后于广泛采用的支持向量机(SVM)。
- 支持向量机(SVM)优势
SVM在机器学习问题上提供了一种有原则的方法,基于统计学习理论的数学基础。它将解决方案构建为支持向量的加权和,支持向量只是训练输入的一个子集。与ANN一样,SVM基于训练数据集最小化特定的误差成本函数,并依赖于经验风险模型。此外,SVM使用结构风险最小化,并对优化问题施加额外约束,迫使优化步骤找到一个最终能更好泛化的模型,因为它位于类别之间的等距和最大距离处。

2. 深度神经网络(DNN)概述

随着硬件和计算能力的进步,DNN作为ANN浅层架构的扩展被提出。虽然有人认为深度学习只是神经网络的另一个“流行词”,但DNN概念源于福岛邦彦(Fu

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值