机器学习实战:示例解析
1. 功率相关模型与优化规划
1.1 功率读数与模型
在系统中,CPU 功率读数和内存功率读数有着特定的计算方式。以下是相关公式:
[
\begin{align }
P(t) &= \sum_{i} \sum_{j} \alpha_{P_{iJ}} V_{t}(CPU_{i}) + \sum_{i} \beta_{P_{iJ}} R_{t}(DRAM_{CH_{i}}) - K_{P_{J}}\
T(t) &= \sum_{i} \sum_{j} \alpha_{T_{iJ}} V_{t}(CPU_{i}) + \sum_{i} \beta_{T_{iJ}} R_{t}(DRAM_{CH_{i}}) - K_{T_{J}}\
V_{t}(CPU_{i}) + V_{t}(DIMM_{i}) &= \sum_{i} \sum_{j} \alpha_{V_{iJ}} T_{t}(CPU_{i}) + \sum_{i} \beta_{V_{iJ}} R_{t}(DRAM_{CH_{i}})
\end{align }
]
1.2 优化规划目标与冲突
在系统运行中,存在多个目标需要优化,这些目标之间可能存在冲突,具体如下:
|目标|描述|
| ---- | ---- |
|每瓦最佳性能|追求在消耗单位功率时获得最高的性能表现|
|保持在功率限制内|确保系统的总功率消耗不超过设定的上限|
|响应时间 ≤ 服务级别协议(SLA)阈值|保证系统对请求的响应时间在规定的阈值范围内|