27、机器学习实战:示例解析

机器学习实战:示例解析

1. 功率相关模型与优化规划

1.1 功率读数与模型

在系统中,CPU 功率读数和内存功率读数有着特定的计算方式。以下是相关公式:
[
\begin{align }
P(t) &= \sum_{i} \sum_{j} \alpha_{P_{iJ}} V_{t}(CPU_{i}) + \sum_{i} \beta_{P_{iJ}} R_{t}(DRAM_{CH_{i}}) - K_{P_{J}}\
T(t) &= \sum_{i} \sum_{j} \alpha_{T_{iJ}} V_{t}(CPU_{i}) + \sum_{i} \beta_{T_{iJ}} R_{t}(DRAM_{CH_{i}}) - K_{T_{J}}\
V_{t}(CPU_{i}) + V_{t}(DIMM_{i}) &= \sum_{i} \sum_{j} \alpha_{V_{iJ}} T_{t}(CPU_{i}) + \sum_{i} \beta_{V_{iJ}} R_{t}(DRAM_{CH_{i}})
\end{align
}
]

1.2 优化规划目标与冲突

在系统运行中,存在多个目标需要优化,这些目标之间可能存在冲突,具体如下:
|目标|描述|
| ---- | ---- |
|每瓦最佳性能|追求在消耗单位功率时获得最高的性能表现|
|保持在功率限制内|确保系统的总功率消耗不超过设定的上限|
|响应时间 ≤ 服务级别协议(SLA)阈值|保证系统对请求的响应时间在规定的阈值范围内|

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值