echo99
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
23、时间序列强化学习与多变量预测:从理论到实践
本文探讨了时间序列强化学习与多变量预测的理论基础及实践应用。内容涵盖多变量时间序列的特点、集成模型方法、多变量预测的软件支持现状以及多种模型的对比实验。通过在能源需求数据集上的实践,比较了DeepAR、N-BEATS、LSTM、Transformer、TCN和高斯过程等模型的性能,并提出了模型选择与优化建议。最后总结了多变量时间序列预测的挑战与未来发展方向。原创 2025-08-31 10:16:08 · 29 阅读 · 0 评论 -
22、时间序列的强化学习:从理论到实践
本文深入探讨了强化学习的核心算法及其实际应用,涵盖多臂老虎机(MAB)、Q学习和深度Q学习的基本原理与实现方法。通过Python实践,展示了这些算法在笑话推荐系统和加密货币交易中的应用流程和效果。文章还总结了各类强化学习算法的特点和适用场景,并讨论了其未来发展趋势与挑战。适合对时间序列决策问题感兴趣的读者和强化学习实践者参考。原创 2025-08-30 15:29:29 · 33 阅读 · 0 评论 -
21、时间序列的深度学习与强化学习实践
本文详细探讨了深度学习与强化学习在时间序列分析中的应用。深度学习部分涵盖了全连接前馈网络、循环神经网络(RNN)和扩张因果卷积神经网络(DC_CNN),并通过代码示例展示了模型构建、训练流程及预测效果。强化学习部分介绍了其基本原理、多臂老虎机算法、深度Q学习,并讨论了其在时间序列决策问题(如金融投资和工业控制)中的应用。文章最后对两种方法在时间序列任务中的优缺点及适用场景进行了对比总结,为读者提供了全面的实践指导。原创 2025-08-29 15:10:40 · 34 阅读 · 0 评论 -
20、时间序列的深度学习实践与探索
本文深入探讨了时间序列深度学习的多种方法,包括自编码器、InceptionTime、DeepAR、N-BEATS、循环神经网络(RNN)、卷积神经网络(CNN)、变压器架构(Transformer)以及Informer等。文章通过飞机乘客预测的实例,展示了如何使用全连接网络构建、训练和改进模型,并对不同算法的适用场景进行了总结。最后,文章提供了时间序列深度学习的整体流程,并展望了未来的发展方向。原创 2025-08-28 10:23:17 · 20 阅读 · 0 评论 -
19、时间序列的概率模型与深度学习
本文探讨了时间序列分析中的概率模型与深度学习方法。首先介绍了模糊时间序列建模和贝叶斯结构时间序列(BSTS)在因果效应分析中的应用,以大众汽车排放丑闻对股价的影响为例进行详细说明。随后回顾了深度学习的发展历程,包括感知机、反向传播、卷积神经网络(CNN)、循环神经网络(RNN)及ResNet等关键技术。进一步分析了深度学习在时间序列预测中的潜力与挑战,并介绍了多个支持时间序列任务的深度学习库。最后展望了时间序列深度学习的未来发展方向。原创 2025-08-27 16:28:24 · 27 阅读 · 0 评论 -
18、时间序列预测的多种模型方法
本文全面介绍了多种时间序列预测模型,包括马尔可夫模型、模糊模型、贝叶斯结构时间序列模型以及Prophet模型。详细阐述了各模型的理论基础、适用场景及Python代码实现。通过比较不同模型的特点和评估指标,帮助读者根据数据特征和问题需求选择合适的预测方法。最后,通过流程图总结了时间序列预测的整体流程,并对未来的发展趋势进行了展望。原创 2025-08-26 16:19:27 · 40 阅读 · 0 评论 -
17、时间序列的在线学习与概率模型
本文深入探讨了时间序列分析中的在线学习与概率模型。内容涵盖概念漂移及其检测方法、自适应学习技术、Python库(如River)的应用,以及多种概率模型(包括Prophet、Markov、Fuzzy时间序列模型)的原理和实践。文章还介绍了模型选择、评估指标及综合应用流程,旨在帮助读者提升时间序列预测的准确性和鲁棒性。原创 2025-08-25 13:13:32 · 19 阅读 · 0 评论 -
16、时间序列的在线学习:原理、算法与漂移处理
本博客深入探讨了时间序列的在线学习原理、核心算法以及漂移处理方法。对比了在线学习与离线学习的主要差异,介绍了增量学习算法及其在动态环境中的应用。博客还详细分析了数据漂移的类型、其对模型的影响,并提供了漂移检测与处理的常用策略。适合关注大数据、实时预测和流式数据处理的读者深入了解相关理论和实践方法。原创 2025-08-24 11:21:56 · 18 阅读 · 0 评论 -
15、时间序列机器学习方法与实践
本文介绍了多种时间序列机器学习方法及其在实际中的应用。内容包括使用虚拟环境配置开发环境、k近邻算法结合动态时间规整对机器人故障数据进行分类、使用Silverkite算法和XGBoost对COVID病例进行预测、Kats集成模型在时间序列预测中的使用,以及在线学习方法在处理流式数据和应对数据漂移中的应用。文章通过代码示例详细展示了各方法的实现步骤,并总结了不同方法的优缺点,为时间序列分析与预测问题提供了实践指导。原创 2025-08-23 10:30:08 · 19 阅读 · 0 评论 -
14、时间序列分析:无监督方法与机器学习模型
本文详细介绍了时间序列分析中的无监督方法和机器学习模型。在无监督方法部分,探讨了异常检测和变化点检测,并通过实际代码展示了如何使用alibi-detect和ruptures库进行操作。在机器学习模型部分,涵盖了k近邻与动态时间规整、Silverkite算法、梯度提升等方法,并强调了向前验证在时间序列数据评估中的重要性。最后,通过一个综合实践示例展示了如何使用XGBoost进行时间序列预测。希望本文能够帮助读者更好地理解和应用时间序列分析的方法和模型,在实际项目中取得更好的效果。原创 2025-08-22 11:35:55 · 31 阅读 · 0 评论 -
13、时间序列的无监督学习方法
本文探讨了时间序列数据的无监督学习方法,重点介绍了异常检测和变化点检测的核心概念、算法及其实际应用。文章涵盖了参数化和非参数化方法、基于距离的方法、现实世界中的应用案例以及Python中常用的库和工具,同时分析了面临的挑战及最新技术趋势。原创 2025-08-21 12:10:37 · 25 阅读 · 0 评论 -
12、移动平均和自回归模型的时间序列预测
本文详细介绍了时间序列预测中常用的模型和方法,包括自回归积分滑动平均(ARIMA)、指数平滑法(如简单指数平滑、Holtz-Winters方法)、自回归条件异方差(ARCH)和广义自回归条件异方差(GARCH)模型,以及向量自回归(VAR)模型。文章还讨论了模型选择标准,如赤池信息准则(AIC)和贝叶斯信息准则(BIC),并结合Python中的statsmodels等库进行了实践操作。通过数据预处理、模型评估和优化,读者可以更好地理解和应用时间序列预测方法。原创 2025-08-20 11:37:35 · 26 阅读 · 0 评论 -
11、时间序列机器学习入门与经典模型详解
本文详细介绍了时间序列机器学习的基础知识与经典模型,涵盖了ARIMA、指数平滑、向量自回归(VAR)、ARCH和GARCH等模型的原理与应用。同时,文章还总结了Python中常用的时间序列分析库及其使用方法,帮助读者更好地理解和应用时间序列建模技术。原创 2025-08-19 16:37:41 · 21 阅读 · 0 评论 -
10、时间序列机器学习入门:算法与应用解析
本文介绍了时间序列机器学习的基础知识及其相关算法,包括时间序列的相似性度量方法(如欧几里得距离、动态时间规整和格兰杰因果关系),以及单变量和多变量时间序列数据的处理方法。文章还详细解析了多种时间序列机器学习算法,如基于距离的方法、符号方法、形状特征相关算法和集成方法,并讨论了不同算法在准确性和计算效率方面的权衡。最后,文章根据不同的需求提供了算法选择建议,帮助读者根据具体任务选择最适合的算法。原创 2025-08-18 11:36:40 · 22 阅读 · 0 评论 -
9、机器学习中的数据验证与误差度量
本文详细探讨了机器学习中的数据验证与误差度量方法,重点介绍了交叉验证的原理与应用场景,以及时间序列数据和分类任务中的常用误差指标。文章涵盖了决定系数、均方误差、平均绝对误差、精确率、召回率、F1分数等核心指标,并通过实际案例说明了它们的应用价值。同时,还讨论了如何根据数据分布、业务需求和模型类型选择合适的误差指标,以及误差指标的未来发展趋势。原创 2025-08-17 10:00:48 · 41 阅读 · 0 评论 -
8、时间序列机器学习入门
本文介绍了时间序列机器学习的基础知识和实践方法,包括ROCKET变换和Shapelets的Python实现,时间序列的预处理步骤,以及时间序列机器学习的应用与问题类型。同时涵盖了机器学习的历史发展、工作流程、交叉验证技术、误差指标、时间序列比较方法,以及常见的机器学习算法如ARIMA、LSTM、随机森林和支持向量机等内容,旨在为读者提供全面的时间序列机器学习入门指南。原创 2025-08-16 14:38:14 · 18 阅读 · 0 评论 -
7、时间序列预处理:技术与实践
本文深入探讨了时间序列预处理中的多种关键技术与实践方法,包括ROCKET方法、形状特征(Shapelets)、对数和幂变换、缺失值插补、节假日特征、日期注释、发薪日特征、季节特征、太阳和月亮特征、工作日特征以及自动化特征提取工具如featuretools和tsfresh的应用。文章还介绍了如何使用sktime库提取ROCKET特征,并通过mermaid流程图展示了不同预处理方法的使用流程。最后,文章总结了各方法的适用场景与特点,并展望了时间序列预处理的未来发展趋势。原创 2025-08-15 10:08:47 · 23 阅读 · 0 评论 -
6、时间序列分析与预处理:Python 实战
本文详细介绍了时间序列分析的基础概念和预处理的重要性,涵盖了时间序列的常见可视化方法、特征变换、缩放、对数和幂变换、插补方法以及特征工程等内容。此外,还讨论了如何提取日期和时间相关特征,并提供了基于Python的代码示例与预处理实践流程。适用于希望提升时间序列数据处理能力的读者,为后续的机器学习建模打下坚实基础。原创 2025-08-14 10:54:06 · 20 阅读 · 0 评论 -
5、Python 时间序列分析全解析
本博客全面解析了使用 Python 进行时间序列分析的方法与技巧,涵盖了从基础操作到高级分析的完整流程。内容包括数据导入与处理、变量理解与分析、变量间关系挖掘、趋势和季节性的识别、平稳性测试以及频谱分析等关键主题。通过实际案例(如空气污染数据和 EEG 数据)展示了如何结合统计方法和可视化工具进行深入分析。适用于希望掌握时间序列分析核心技能的数据科学从业者和研究者,助力实际问题的解决与预测建模。原创 2025-08-13 13:34:58 · 15 阅读 · 0 评论 -
4、Python时间序列分析入门与实践
本文是一篇关于Python时间序列分析的入门与实践指南,内容涵盖Python基础库(如NumPy、pandas)的使用、时间序列分析的核心概念与关键步骤,以及使用实际数据集进行趋势和季节性分析的详细实践过程。文章还介绍了数据清洗、变量理解、多变量分析、时间序列分解等关键技术,并提供了完整的代码示例和分析流程图,适合初学者和希望提升时间序列分析能力的数据科学从业者阅读。原创 2025-08-12 09:47:05 · 20 阅读 · 0 评论 -
3、多领域知识与Python在时间序列中的应用
本文探讨了多领域知识与Python在时间序列分析中的应用。从数学优化算法到经济学、气象学、医学和应用统计学,文章梳理了各领域的发展历程及其对时间序列分析的影响。重点介绍了Python作为时间序列分析工具的优势,包括丰富的库、安装管理工具(conda和pip)以及Jupyter环境的应用。同时,对常用Python时间序列库进行了比较,并展望了未来时间序列分析在多个领域的发展趋势。原创 2025-08-11 12:19:52 · 25 阅读 · 0 评论 -
2、时间序列分析:从基础概念到历史发展
本文详细介绍了时间序列分析的基本特征及其发展历程。从单变量与多变量时间序列的区别,到趋势、季节性变化、不规则或周期性成分和平稳性等关键特征进行了深入解析。同时,回顾了时间序列分析的历史演进,涵盖人口统计学、遗传学和天文学等多个学科的贡献,并总结了时间序列分析的应用前景及未来挑战。文章展示了时间序列分析在金融、气象、医疗和工业等领域的广泛应用,并展望了其在物联网和机器学习推动下的未来发展潜力。原创 2025-08-10 14:55:40 · 21 阅读 · 0 评论 -
1、利用Python进行时间序列机器学习入门
本文介绍了时间序列的基本概念及其在不同学科中的研究历史,重点讲解了Python在时间序列分析和机器学习中的应用。内容包括时间序列的定义、关键分析步骤、预处理方法、常用机器学习模型以及预测方法。文章还提供了相关的Python代码示例和工具安装方法,帮助读者快速入门时间序列建模与预测。原创 2025-08-09 09:55:29 · 16 阅读 · 0 评论