28、基于行人交互图和隐马尔可夫模型的事件检测

基于行人交互图和隐马尔可夫模型的事件检测

在大型活动现场,如宗教集会、节日庆典或示威游行等,人群的安全至关重要。为了预防如大规模恐慌、斗殴等灾害和事故的发生,对人群进行视觉监控是一种有效的手段。而利用航空平台获取的图像序列和视频数据,能够提供人群的整体视图,且大多不存在遮挡问题。本文将介绍一种基于行人交互图和隐马尔可夫模型(HMM)的事件检测方法,用于在拥挤和杂乱的场景中检测行人交互事件。

1. 研究背景

近年来,人群分析的研究日益受到关注。事件检测的主要输入数据有轨迹和光流两种。基于光流的事件检测系统能够检测高密度人群中的异常事件,但无法推断个体的具体行为,也难以给出异常事件类型的语义描述。相比之下,离散轨迹的分析得到了更多的研究。

在轨迹分析中,隐马尔可夫模型(HMM)被广泛应用。不过,现有的基于轨迹的方法存在一定局限性,如通过分类或挖掘重复轨迹构建的模型不够灵活,难以应对个体和自发的运动模式;检测异常事件需要事先有足够的正常事件数据,且监控场景需满足特定条件。

2. 隐马尔可夫模型(HMM)

HMM是一种概率模型,由有向无环图表示,是动态贝叶斯网络的最简单形式。其底层系统是一个隐藏状态的马尔可夫链,每个时间步生成的可观测输出仅取决于当前的隐藏状态。

2.1 HMM的参数

HMM由以下参数定义:
- 一组N个隐藏状态 {s1, s2, …, sN},时间t的状态记为qt。
- 一组M个观测值 {v1, v2, …, vM},时间t的观测值记为ot。
- 转移概率矩阵A,元素aij表示从si到sj的转移概率:
- aij = P (qt = sj|qt

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值