30、交叉行人流轨迹提取与密度分析及圆形中心定位测量精度研究

交叉行人流轨迹提取与密度分析及圆形中心定位测量精度研究

交叉行人流相关研究

在人群分析中,从稀疏数据中估计连续的人群密度是一个主要问题,这对于基于连续模型(如偏微分方程)的数值模拟验证至关重要。

人群密度估计方法
  • 传统粒子密度公式 :对于观察区域 $\Omega \subset R^n$(平面区域 $n = 2$,体积区域 $n = 3$)内大量 $N$ 个粒子,位置为 $x_j \in \Omega$($j = 1, \cdots, N$),点 $x \in \Omega$ 处的粒子密度 $\rho(x)$ 可近似表示为该点足够小邻域 $\Omega_0 \subset \Omega$ 内包含的粒子数 $N_0$ 除以邻域面积或体积,即 $\rho(x) \approx \frac{N_0}{|\Omega_0|}$。当粒子数量非常大时,该值对 $\Omega_0$ 的选择依赖性可忽略。例如在流体力学中,每立方米 $N = 10^{26}$ 个粒子的全局粒子密度很常见,即使在 $|\Omega_0| = 1 \ \mu m^3$ 的微小体积中,平均仍有 $N_0 = 10^8$ 个粒子来估计局部密度,相对测量误差可忽略不计。
  • Helbing 公式 :对于人数少得多的人群,Helbing 等人(2007)提出公式 $\rho(t, x) = \frac{1}{\pi R^2} \sum_{i = 1}^{N} \exp(-\frac{|x_i(t) - x|^2}{R^2})$ 来计算某一时刻 $t$ 的局部密度,其中 $R > 0$ 是合适的常数,该公式可
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值