物理主动学习模拟器中的知识推理
1. 智能教学系统(ITS)的目标与功能
智能教学系统(ITS)在物理主动学习模拟器(ALS)中具有重要作用,其主要目标包括:
1. 跟踪学生在实验重复过程中的进度,以决定最适当的教学行动。
2. 开发新的实验,可轻松添加到 ALS 网站,而无需更改学生模型。
3. 减少为其他领域开发新的 ALS 所需的时间。
ITS 在学生进行实验时跟踪其行动,监控学生表现,更新学生模型,按需提供适当反馈,并确定未来的实验。当学生在学习环境中进行实验时,学生模型将实验评估的证据传播到知识库中的知识对象。基于此以及从先前实验证据中积累的其他信息,行为模块会按需更新学生模型。每次实验完成后,导师模块会根据实验结果决定向学生展示的最佳反馈。
2. 基于概率关系模型(PRM)的 ITS 结构
ITS 基于概率关系模型(PRM),该模型提供了一种新的方法来建模和整合贝叶斯网络的预测能力以及关系模型的优势。ITS 有四个使用 PRM 的模块:
- 学生模型 :
- 确定领域中涉及的主要知识对象。
- 定义类级别的依赖模型。
- 为每个类定义多个属性(信息变量和随机变量)。
- 从类级别模型中提取骨架,即作为主模型片段的一般贝叶斯网络模型。
以下是学生模型的相关表格:
| 模型元素 | 说明 |
| ---- | ---- |
| 学生行为(StudentbehaviorA(X6)) | 包含学生 ID、问题 ID、问题成绩等信息 |
| 实验结果(Experimentresu