模糊软集与逆向物流在决策与业务中的应用
1. 模糊软集相关概念
1.1 模糊软集基础
模糊软集是一种处理不确定性问题的有效工具。设 $U$ 为初始论域,$E$ 为参数集。对于模糊软集 $\Gamma_A$,存在一个函数 $\gamma_A(x)$ 表示映射 $c_A : E \to F(U)$,当 $x \notin E_A$ 时,$c_A(x) = \varnothing$。这里,$\gamma_A(x)$ 被称为模糊软集 $\Gamma_A$ 的模糊近似函数,对于所有 $x \in E$,$\gamma_A(x)$ 是一个模糊集,被称为模糊软集的 $x$ - 元素。因此,模糊软集 $\Gamma_A$ 可以用有序对集合 $C_A = { (x, c_A(x)) : x \in E, c_A(x) \in F(U) }$ 表示。
1.2 模糊软集聚合与决策
1.2.1 模糊软集聚合得分
根据相关定义,模糊软集的聚合得分 $l^ _{C_A}(u)$ 定义为:
[l^ {C_A}(u) = \frac{1}{|E|} \sum {x \in E} l_{c_{C_A}(x)} l_{c_A(x)}(u)]
1.2.2 模糊软集决策算法
- 输入模糊软集 $\Gamma_A$ 。
- 找出 $\Gamma_A$ 的基数集 $c_{\Gamma_A}$ 。
- 计算 $\Gamma_A$ 中每个备选方案的聚合得分。
- 选择具有最大隶属度等级的最佳备选方案。