机器学习模型评估  过拟合与欠拟合的改进方案

在模型评估与调整的过程中, 我们往往会遇到“过拟合”或“欠拟合”的情况。 如何有效地识别“过拟合”和“欠拟合”现象, 并有针对性地进行模型调整, 是不断改进机器学习模型的关键。 特别是在实际项目中, 采用多种方法、 从多个角度降低“过拟合”和“欠拟合”的风险是算法工程师面试必备知识。

欠拟合与过拟合现象

过拟合是指模型对于训练数据拟合呈过当的情况, 反映到评估指标上,就是模型在训练集上的表现很好, 但在测试集和新数据上的表现较差。

欠拟合指的是模型在训练和预测时表现都不好的情况。

https://i-blog.csdnimg.cn/blog_migrate/9c87fb93245dea759bfd6f40a4458357.png 通常,欠拟合的模型不能很好地捕捉到数据的特征, 不能够很好地拟合数据。过拟合的模型过于复杂, 把噪声数据的特征也学习到模型中, 导致模型泛化能力下降, 在后期应用过程中很容易输出错误的预测结果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值