Total body segmentation using MONAI Deploy on an AMD GPU — ROCm Blogs
2024 年 4 月 4 日 作者: Vara Lakshmi Bayanagari.
医疗开放网络人工智能(MONAI)是一个开源组织,提供最先进的医疗成像模型的 PyTorch 实现,涵盖从分类和分割到图像生成的各个方面。MONAI 的生命周期为研究人员、临床医生和同领域的贡献者提供了三种不同的端到端工作流工具:MONAI Core、MONAI Label 和 MONAI Deploy。
MONAI Core 提供可用于端到端训练和推理的模型。MONAI Label 是一个智能工具,可基于用户交互自动标记数据集。MONAI Deploy 是一个打包工具,提供命令行接口(CLI)命令(如 monai-deploy exec
、`monai-deploy package`)来部署可以投入生产的 AI 应用程序。此外,它允许将您的应用程序打包成 MAP/Docker 镜像,可以使用 monai-deploy run
命令运行。MONAI Deploy 提供了打包的示例应用程序(例如脾脏分割和乳腺密度分类)。
正如MONAI 的教程所解释的那样,创建一个应用程序/SDK 需要我们定义一组运算符,这些运算符将按顺序执行。运算符是应用程序中的一个工作单元,可以有多个虚拟输入/输出端口。每个端口通过将前一个运算符的输出端口的输出传递给当前运算符的输入端口,从而促进应用程序的进展。例如,脾脏分割应用程序的官方教程使用了五个预定义的运算符:
-
DICOMDataLoaderOperator: 从输入文件夹中的
.dcm
文件加载 DICOM(标准医疗体积存储格式)研究。 -
DICOMSeriesSelectorOperator: L根据规则集从每个 DICOM 研究中加载特定数据系列。该示例中使用的规则集使用正则表达式过滤每个研究中的 CT 文件。或者,我们还可以添加多个条件,例如:`Spleen & CT 1` 为第一个条件,`Abdomen & CT 2` 为第二个条件,如此处所示:
{ "selections": [ { "name": "CT Series", "conditions": { "StudyDescription": "(.*?)", "Modality": "(?i)CT", "SeriesDescription": "(.*?)" } } ] }
-
DICOMSeriesToVolumeOperator: 将 DICOM 实例转换为 NumPy 数组进行进一步处理。</