CTranslate2:在 AMD GPU 上高效推理 Transformer 模型

CTranslate2: Efficient Inference with Transformer Models on AMD GPUs — ROCm Blogs

Transformer 模型通过在机器翻译、文本摘要、文本生成和语音识别等任务中提供高性能结果,彻底改变了自然语言处理(NLP)的领域。然而,由于这些模型对计算和内存的高需求,在生产环境中部署它们可能会面临挑战。CTranslate2 通过提供一个自定义运行时来应对这些挑战,该运行时实现了各种优化技术,以加速 Transformer 模型的推理。

在这篇博客中,您将了解到如何使用 CTranslate2 这一强大的 C++ 和 Python 库,在 AMD 硬件上优化和加速 Transformer 模型的推理。我们将探讨它的关键特性、安装过程,以及如何将其集成到您的 NLP 应用中,以实现显著的性能提升和内存使用的减少。

OpenNMT 和CTranslate2是什么?

OpenNMT是一个开源工具包,专为机器翻译设计。机器翻译是自动将文本从一种语言转换为另一种语言的过程。它还支持如文本摘要等相关任务,涉及对单词序列的理解和生成,通常被称为“神经序列学习”。OpenNMT 提供了一个综合工具包,用于训练和部署翻译模型。CTranslate2 是一个优化的推理引擎,支持在 OpenNMT 中训练的模型,在生产环境中部署这些模型时可以提供显著的速度提升和效率改进。它是 OpenNMT 生态系统的一部分,可以作为一种专为高性能 Transformer 模型推理而量身定制的解决方案。

CTranslate2 库包括强大的功能,如将模型嵌入到 C++ 应用程序中,并减少模型在磁盘和内存中的占用。作为框架无关的库,它可以处理从 PyTorch 或 TensorFlow 等框架导出的模型,同时保持轻量级执行。

用 CTranslate2 训练的模型会转换为一种特殊的“CTranslate2 格式”,该格式使得模型能够进行高效推理优化。这种格式设计用于加速模型的使用,同时减少内存占用,使其更适合生产环境。

CTranslate2的关键功能

CTranslate2 提供了一系列设计用来优化 Transformer 模型推理的功能,包括:

  • 快速高效的执行:针对 CPU 和 GPU 进行了优化,提供快速高效的 Transformer 模型推理

  • 量化和降低精度:支持量化到 INT8、INT16 和 FP16,在保持精度的同时减少内存使用

  • 并行和异步执行:允许批量和异步推理,以最大限度提高吞吐量

  • 动态内存使用:高效利用内存以进行大规模部署

  • 磁盘占用轻量:减少模型尺寸,有助于可扩展性

  • 简单集成:易于嵌入 C++ 或 Python 应用程序

  • 张量并行:支持大型模型的分布式推理

支持的模型和框架

CTranslate2 目前支持以下模型:

  • 编码器-解码器模型(Encoder-Decoder Models):Transformer base/big,BART,mBART,Pegasus,T5,Whisper

  • 仅解码器模型(Decoder-Only Models):GPT-2,GPT-J,GPT-NeoX,OPT,BLOOM,MPT,Llama,Mistral,CodeGen,Falcon

  • 仅编码器模型(Encoder-Only Models):BERT,DistilBERT,XLM-RoBERTa

兼容的模型应首先转换为优化的模型格式。该库包含多个框架的转换器:

安装和设置 

要在 AMD GPU 上运行 CTranslate2,您将需要:

以下是开始的步骤:

  1. 克隆 ROCm CTranslate2 仓库:

    git clone https://github.com/RO
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

109702008

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值