EAO-SLAM: Monocular Semi-Dense Object SLAM Based on Ensemble Data Association

EAO-SLAM是一种单目半稠密物体级SLAM方法,结合参数和非参数统计检验进行数据关联,提升鲁棒性和精度。该系统构建半稠密地图和轻量物体地图,适用于语义SLAM,通过YOLOv3检测物体,并用孤立森林等技术进行位姿和尺度估计。在多个数据集上,EAO-SLAM表现出优于现有方法的精度和鲁棒性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

EAO-SLAM: Monocular Semi-Dense Object SLAM Based on Ensemble Data Association

EAO-SLAM:集成数据关联的单目半稠密物体级SLAM

在这里插入图片描述
类别:单目半稠密Object SLAM

代码:基于ORB-SLAM2,待开源https://github.com/yanmin-wu/EAO-SLAM

摘要:
物体级别(Object-level)数据关联和位姿估计在语义SLAM中有重要的作用,至今由于缺少鲁棒和精准的算法还没有解决。本篇论文工作提出一种集成数据关联策略来融合参数和非参数的统计检验,极大地提高数据关联的鲁棒性和精确度。
除此之外该文章提出了可剔除外点的物体中心点、尺度估计和物体位姿初始化算法的物体位姿估计框架来提高估计的结果。
基于以上,该论文提出了一个单目SLAM系统可以建立半稠密地图以及只有物体的轻量地图。经过在三个公开数据集上测试运行,该方法在精度和鲁棒性上极大地优于现有的方法。

解决的问题:

  1. 数据关联(使用带参数和无参数的统计检验一起关联数据)
  2. 物体建模(孤立森林和线来感知物体的位置,大小以及朝向角度)
  3. 地图表示(使用曲面椭圆和立方体建立物体地图 )

SLAM系统介绍

系统框架

在这里插入图片描述

绿色的语义线程输入图像,使用YOLOv3检测物体,为算法提供bounding box以及label。该论文的主要贡献用红色显示在跟踪线程中:本文提出的数据关联算法将bounding box,语义标签以及tracking过程中的三维点云作为输入,之后使用孤立森林清除outlier为优化找到精准的初始化。之后物体位姿,尺度以及相机位姿一起优化建立轻量的物体地图。最终,物体地图和半稠密地图一起可以得到半稠密语义地图。

数据关联

在这里插入图片描述

无参数检验如图3(a)所示,绿色点为物体点云,使用Wilcoxon Rank-Sum test判断两组点云分布是否一致确定一帧图两点云是否属于同一物体。通过物体的中心点,单样本T检验用于判断一帧上的点云是否属于之前观察到的某个物体,双样本的T检验判断观察到的两个物体是否需要合并。

Object SLAM

物体由带尺度 s s s的椭圆和立方体表示,在slam中需要估计它们的平移 t t t以及朝向 θ \theta

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值