面试20场,我总结了面试问题及解答!激光+IMU融合定位方向

本文作者分享了在求职SLAM算法工程师过程中遇到的20场面试中关于激光+IMU融合定位的问题及解答,涉及定位精度、地图更新、重定位、ESKF优点等多个核心议题,旨在促进同行交流和知识点梳理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原文链接:面试20场,我总结了面试问题及解答!激光+IMU融合定位方向

大家好,我是小6,我们SLAM知识星球里很多小伙伴即将开始实习、求职,为了能够让星球里所有小伙伴能够顺利找到工作,在此号召大家一起对自己曾经参与过的笔试、面试问题进行总结和复盘,既能帮自己梳理知识点,也能和大家一起讨论解题思路和技巧。以下是某位星球朋友的分享,欢迎大家对提出的问题进行补充,回答,讨论。

图片


以下是正文

去年经历的面试不下20场,有的很水,有的问出来的题目非常有水平,趁这个机会整理出来遇到的不会的问题,供各位同行讨论。

类型:社招,远程面试+笔试

岗位:SLAM算法工程师

下面的问

### SLAM中的BA(Bundle Adjustment)算法面试问题及答案 #### 李群与李代数的映射关系及其在SLAM中的作用 在讨论BA之前,了解李群和李代数之间的联系对于理解如何处理姿态估计至关重要。SO(3) 和 SE(3) 是描述旋转和平移变换的重要工具,它们分别对应三维空间内的特殊正交群以及扩展欧几里得群。通过指数映射可以实现从李代数到对应的李群元素转换[^1]。 #### 视觉SLAM概述与发展现状 视觉同步定位与建图(SLAM),作为机器人感知周围环境并构建地图的关键技术之一,在近年来得到了迅速的发展。这项技术不仅限于传统的移动机器人导航领域,还广泛应用于增强现实(AR)/虚拟现实(VR)等多个方。随着计算机视觉理论和技术的进步,特别是深度学习模型的应用,使得基于图像序列来解决SLAM问题成为可能,并且精度更高、鲁棒性更强[^2]。 #### 极线约束的概念及其重要性 当涉及到双目或多视角立体匹配时,“极线约束”是一个非常重要的概念。简单来说就是给定一对校准过的摄像机拍摄同一景的不同视点下的两张图片,如果已知某一点在一个图像上的位置,则该点必定位于另一个图像上的一条直线上—即所谓的“极线”。这种特性极大地减少了搜索范围从而提高了匹配效率[^3]。 #### BA优化的核心思想与实践意义 束调整(Bundle Adjustment, BA)是一种用于最小化重投影误差的方法论框架,它试图找到一组最优参数使所有观测数据尽可能接近预测值。具体而言,在SLAM背景下这意味着要同时优化相机轨迹和路标点坐标以获得最一致的地图表示形式。尽管传统意义上的全局BA由于其高复杂度难以满足实时需求,但借助稀疏BA (Sparse Bundle Adjustment,SBA) 技术加上现代GPU/FPGA等硬件支持下已经能够实现实时性能了[^4]。 #### SLAM传感器的选择依据 为了完成有效的SLAM任务,合理选择合适的传感设备非常重要。一般来说,可以根据应用景的具体特点选取不同类型的传感器组合方案。例如轮式编码器适合室内平坦地行驶的小型无人车;而对于户外大尺度环境下作业则更倾向于采用激光雷达(LiDAR)+惯性测量单元(IMU)+摄像头这样的多模态融合方式提高系统的可靠性和准确性[^5]。 ```python import numpy as np from scipy.optimize import least_squares def reprojection_error(params, points_3d, points_2d, camera_matrix): """Compute the re-projection error.""" R = params[:9].reshape((3, 3)) t = params[9:12] projected_points = [] for point in points_3d: homogeneous_point = np.array([*point, 1]) transformed_point = R @ homogeneous_point + t normalized_point = transformed_point / transformed_point[-1] image_point = camera_matrix @ normalized_point[:-1] projected_points.append(image_point) errors = [(p_proj - p_true)**2 for p_proj, p_true in zip(projected_points, points_2d)] return sum(errors).flatten() # Example usage of bundle adjustment with synthetic data. points_3d = ... # List of 3D landmark positions points_2d = ... # Corresponding list of observed 2D projections camera_matrix = ... # Camera intrinsic parameters matrix initial_guess = [...] # Initial guess for rotation and translation vectors combined into one array result = least_squares(reprojection_error, initial_guess, args=(points_3d, points_2d, camera_matrix)) optimized_params = result.x ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值