以下内容来自从零开始机器人SLAM知识星球 每日更新内容
点击领取学习资料 → 机器人SLAM学习资料大礼包
#论文##开源代码# Wheel-SLAM: Simultaneous Localization and Terrain Mapping Using One Wheel-mounted IMU
论文地址:https://arxiv.org/abs/2211.03174
作者单位:武汉大学
开源地址:GitHub - i2Nav-WHU/Wheel-SLAM: Simultaneous Locali…
移动机器人需要一种对环境干扰具有鲁棒性的可靠位姿估计器。为此,惯性测量单元(IMU)发挥了重要作用,因为它们可以独立感知车辆的全运动状态。然而,由于固有的噪声和偏置不稳定性,它会出现累积误差,尤其是对于低成本传感器。在我们之前对 Wheel-INS的研究中,我们提出通过在机器人的轮子上安装 IMU 以利用旋转调制来限制纯惯性导航系统 (INS) 的误差漂移。但是,由于缺乏外部校正信号,它仍然在很长一段时间内漂移。在这篇文章中,我们建议利用 Wheel-INS 的环境感知能力来实现仅使用一个 IMU 的同时定位和建图 (SLAM)。具体来说,我们使用路堤角度(由 Wheel-INS 估计的机器人滚动角度反映)作为地形特征,以使用 Rao-Blackwellized 粒子滤波器实现闭环。根据粒子维护的网格图中的机器人位置,对路堤角度进行采样和存储。根据当前估计的滚动序列与地形图之间的差异更新粒子的权重。现场实验表明,使用机器人滚动角估计在 WheelINS 中执行 SLAM 的想法是可行的。此外,定位精度比 Wheel-INS 显着提