直接po代码,简单的rnn的adder,改自github,不用TensorFlow等框架,可实现多位(超过8位)。
import copy, numpy as np
np.random.seed(0)
def sigmoid(x):
output = 1 / (1 + np.exp(-x))
return output
def sigmoid_output_to_derivative(output):
return output * (1 - output)
int2binary = {}
binary_dim = 16
binary = []
def generateInt2Binary(largest_number):
for i in range(largest_number):
c = (bin(i).replace('0b','').zfill(binary_dim))
binary.append([int(a) for a in c])
largest_number = pow(2, binary_dim)
generateInt2Binary(largest_number)
for i in range(largest_number):
int2binary[i] = binary[i]
alpha = 0.5
input_dim = 2
hidden_dim = 32
output_dim = 1
synapse_0 = 2 * np.random.random((input_dim, hidden_dim)) - 1
synapse_1 = 2 * np.random.random((hidden_dim, output_dim)) - 1
synapse_h = 2 * np.random.random((hidden_dim, hidden_dim)) - 1
synapse_0_update = np.zeros_like(synapse_0)
synapse_1_update = np.zeros_like(synapse_1)
synapse_h_update = np.zeros_like(synapse_h)
print('start train...')
for j in range(10000):
a_int = np.random.randint(largest_number/2)
a = int2binary[a_int]
b_int = np.random.randint(largest_number/2)
b = int2binary[b_int]
c_int = a_int + b_int
c = int2binary[c_int]
d = np.zeros_like(c)
overallError = 0
layer_2_deltas = list()
layer_1_values = list()
layer_1_values.append(np.zeros(hidden_dim))
for position in range(binary_dim):
X = np.array([[a[binary_dim - position - 1], b[binary_dim - position - 1]]])
y = np.array([[c[binary_dim - position - 1]]]).T
layer_1 = sigmoid(np.dot(X, synapse_0) + np.dot(layer_1_values[-1], synapse_h))
layer_2 = sigmoid(np.dot(layer_1, synapse_1))
layer_2_error = y - layer_2
layer_2_deltas.append((layer_2_error) * sigmoid_output_to_derivative(layer_2))
overallError += np.abs(layer_2_error[0])
d[binary_dim - position - 1] = np.round(layer_2[0][0])
layer_1_values.append(copy.deepcopy(layer_1))
future_layer_1_delta = np.zeros(hidden_dim)
for position in range(binary_dim):
X = np.array([[a[position], b[position]]])
layer_1 = layer_1_values[-position - 1]
prev_layer_1 = layer_1_values[-position - 2]
layer_2_delta = layer_2_deltas[-position - 1]
layer_1_delta = (future_layer_1_delta.dot(synapse_h.T) + layer_2_delta.dot(
synapse_1.T)) * sigmoid_output_to_derivative(layer_1)
synapse_1_update += np.atleast_2d(layer_1).T.dot(layer_2_delta)
synapse_h_update += np.atleast_2d(prev_layer_1).T.dot(layer_1_delta)
synapse_0_update += X.T.dot(layer_1_delta)
future_layer_1_delta = layer_1_delta
synapse_0 += synapse_0_update * alpha
synapse_1 += synapse_1_update * alpha
synapse_h += synapse_h_update * alpha
synapse_0_update *= 0
synapse_1_update *= 0
synapse_h_update *= 0
if (j % 1000 == 0):
print('this is the %d times test...' % j)
print("ErrorRate is: %.2f" % overallError)
out = 0
for index, x in enumerate(reversed(d)):
out += x * pow(2, index)
print(str(a_int) + " + " + str(b_int) + " = " + str(out))
print('')
print('training is over...')
while True:
layer_1_values = list()
layer_1_values.append(np.zeros(hidden_dim))
a_int = int(input('please input the first number: '))
b_int = int(input('please input the first number: '))
a = int2binary[a_int]
b = int2binary[b_int]
c_true_int = a_int + b_int
c = int2binary[c_true_int]
d_bin = np.zeros_like(c)
for position in range(binary_dim):
# generate input and output
X = np.array([[a[binary_dim - position - 1], b[binary_dim - position - 1]]])
y = np.array([[c[binary_dim - position - 1]]]).T
layer_1 = sigmoid(np.dot(X, synapse_0) + np.dot(layer_1_values[-1], synapse_h))
layer_2 = sigmoid(np.dot(layer_1, synapse_1))
d_bin[binary_dim - position - 1] = np.round(layer_2[0][0])
layer_1_values.append(copy.deepcopy(layer_1))
out = 0
for index, x in enumerate(reversed(d_bin)):
out += x * pow(2, index)
print(str(a_int) + " + " + str(b_int) + " = " )
print('predict: ' + str(out))
print('true: ' + str(c_true_int))