Spring AI 1.0正式发布,还顺便发布了一首新歌???

因公众号更改推送规则,请点“在看”并加“星标”第一时间获取精彩技术分享

点击关注#互联网架构师公众号,领取架构师全套资料 都在这里

0、2T架构师学习资料干货分

上一篇:2T架构师学习资料干货分享

大家好,我是互联网架构师!

Spring AI

2025年5月20日,在这个浪漫的日子里,Spring官方宣布 Spring AI 1.0 正式发布!这是AI开发领域的一次里程碑事件,标志着开发者可以更高效、更灵活地构建企业级AI应用。从核心API到生态集成,从工具链到安全规范,Spring AI 1.0带来了全方位的革新。本文带你一探究竟!

Spring AI 的核心亮点


1. ChatClient:AI模型交互的统一入口

Spring AI 1.0的核心是ChatClient,一个轻量级、可移植的API接口。它支持与20+主流AI模型(如Anthropic、ZhiPu)无缝对接,并兼容多模态输入输出(文本、图像)和结构化响应(如JSON),大幅简化AI模型调用流程。

📌 示例:只需一行代码调用Claude模型生成JSON响应:String

 response = chatClient.call(newPrompt("What is the capital of France?"),ChatOptions.builder().withResponseFormat(Json.class).build());


2. Advisor API:增强LLM能力的“智能助手”

通过Advisor API,开发者可以动态拦截并增强用户提示(Prompt),注入检索数据、对话记忆等上下文。例如,RetrievalAugmentationAdvisor能自动将知识库内容注入提示,实现Retrieval Augmented Generation(RAG),让AI回答更精准。


3. ETL框架:数据预处理的自动化引擎

Spring AI内置轻量级ETL(Extract-Transform-Load)框架,支持从本地文件、S3、GitHub等20+数据源提取内容,并自动分块、生成嵌入(Embedding),轻松构建RAG流水线。

🚀 示例:3行代码将GitHub仓库文档导入向量数据库:DocumentReader

 githubReader =newGitHubDocumentReader("https://github.com/spring-projects/spring-ai");
VectorStore vectorStore =newWeaviateVectorStore();
ETL.etl(githubReader).to(vectorStore);


4. Memory系统:对话历史的智能管理

通过ChatMemory接口,开发者可灵活管理对话历史。MessageWindowChatMemory保留最近N条消息,而VectorStoreChatMemory则通过语义搜索召回相似历史对话,打造“有记忆”的AI助手。


5. Tools支持:AI与外部世界的桥梁

Spring AI通过@Tool注解,允许开发者定义自定义函数(如天气查询、数据库操作),让AI主动调用外部API。结合MCP协议,开发者可直接复用GitHub搜索、邮件发送等预置工具。


6. Evaluation体系:AI效果的量化评估

引入RelevancyEvaluatorFactCheckingEvaluator,开发者可自动验证AI回答的相关性和准确性。例如,使用小型模型Minicheck进行低成本事实校验,避免“幻觉”问题。


7. Observability:生产环境的监控利器

集成Micrometer,提供模型延迟、Token消耗、工具调用等指标的实时监控,并通过分布式追踪(Tracing)定位问题根源。

Agent驱动的AI革命

Spring AI 1.0全面支持Agent开发

  • Workflow Agents

    :通过预设流程处理复杂任务(如路由、并行化)。

  • Autonomous Agents

    :基于MCP协议自主决策,动态调用工具(如Brave搜索)。

  • Tanzu AI Solutions

    :企业级部署方案,提供安全控制、自服务模型市场等功能。

Augmented LLM

社区彩蛋:新歌+新Logo


社区随着这次发布,还发布了一首新歌。。。。

歌曲地址:

https://suno.com/playlist/321b61a4-201d-4404-9335-bf909250b0e3

除此之外还推出了,全新Logo设计,由Spring IO会议组织者Sergi Almar与设计师Jorge Rigabert联手打造,融合科技感与艺术性。

图片

Spring AI 1.0的发布,不仅是一次技术迭代,更是AI工程化的里程碑。从开发者友好到企业级部署,从工具链到安全规范,Spring AI正在重新定义AI应用的开发范式。

下载地址,见:

清华出的DeepSeek使用手册,104页,真的是太厉害了!(免费领取)

—  —

如喜欢本文,请点击右上角,把文章分享到朋友圈


1、2T架构师学习资料干货分享

2、10000+TB 资源,阿里云盘,牛逼!!

3、基本涵盖了Spring所有核心知识点总结

4、DeepSeek创始人梁文锋个人履历

逆天,面试被挂的原因竟然是,搜了女仆......

DeepSeek全方位指南:10分钟快速上手

字节跳动员工自爆工资收入明细,网友:离谱啊!

  · END ·

最后,关注公众号互联网架构师,在后台回复:2T,可以获取我整理的 Java 系列面试题和答案,非常齐全。

如果这篇文章对您有所帮助,或者有所启发的话,帮忙扫描上方二维码关注一下,您的支持是我坚持写作最大的动力。

求一键三连点赞、转发、在看

Spring AI 1.0 是一个基于 Spring 框架的扩展模块,旨在为开发者提供一套工具和框架支持,以简化人工智能和机器学习模型的集成与部署。尽管目前官方尚未详细公开 Spring AI 的所有功能,但根据 Spring 生态系统的特性[^2],可以推测其主要目标是将 AI 和 ML 模型无缝集成到现有的 Spring 应用程序中。 ### Spring AI 1.0 的核心特性 Spring AI 1.0 提供了以下关键特性,帮助开发者快速构建和部署基于 AI 的应用程序: 1. **模型管理** Spring AI 1.0 提供了一套工具,用于加载、管理和更新机器学习模型。它支持常见的框架(如 TensorFlow、PyTorch 等),并允许开发者通过简单的配置将模型集成到 Spring Boot 应用中[^3]。 2. **RESTful API 支持** 类似于 Spring Boot 的自动配置功能,Spring AI 1.0 可以自动生成 RESTful API 接口,用于接收输入数据并返回模型预测结果。例如,开发者可以通过 `@AIApi` 注解快速定义一个端点来处理推理请求。 ```java @RestController @AIApi(modelPath = "path/to/model") public class AIPredictionController { @GetMapping("/predict") public PredictionResult predict(@RequestBody InputData data) { return aiService.predict(data); } } ``` 3. **分布式部署支持** 借助 Spring Cloud 的生态系统,Spring AI 1.0 支持将 AI 模型作为微服务进行分布式部署。这使得模型能够轻松扩展以满足高并发需求,并且可以通过 Eureka 或 Consul 等服务发现工具实现动态负载均衡[^1]。 4. **日志与监控** Spring AI 1.0 内置了对日志记录和监控的支持,帮助开发者跟踪模型性能和运行状态。通过 Actuator 端点,可以实时获取模型的指标数据,例如推理延迟、准确率等。 ### 使用方法 以下是使用 Spring AI 1.0 构建一个简单 AI 应用的基本流程: #### 1. 添加依赖 在 `pom.xml` 文件中添加 Spring AI 的相关依赖: ```xml <dependency> <groupId>org.springframework.ai</groupId> <artifactId>spring-ai-boot-starter</artifactId> <version>1.0.0</version> </dependency> ``` #### 2. 配置模型路径 在 `application.yml` 中指定模型文件的路径: ```yaml spring: ai: model-path: path/to/your/model ``` #### 3. 创建控制器 定义一个 REST 控制器来处理推理请求: ```java @RestController public class AIPredictionController { @Autowired private AIService aiService; @PostMapping("/predict") public PredictionResult predict(@RequestBody InputData inputData) { return aiService.predict(inputData); } } ``` #### 4. 启动应用 使用标准的 Spring Boot 启动方式启动应用: ```java @SpringBootApplication @EnableAIClient public class AIDemoApplication { public static void main(String[] args) { SpringApplication.run(AIDemoApplication.class, args); } } ``` ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值