小米带你玩转LangChain4j:向量化存储与智能查询实战分享

大家好,我是你们活力满满、热爱分享技术的31岁小米!最近,我在搞一个超酷的项目,玩转了LangChain4j的向量化与向量库存储,顿时感觉知识点串起来,简直开挂!所以,今天我用讲故事的方式给大家拆解,带你从Embedding模型原理入门,到用LangChain4j配合Qdrant做高效向量检索,通通不放过!

Embedding模型简介

在自然语言处理(NLP)领域,向量化的概念并不新鲜。说白了,就是把文本转换成机器能理解的“数字串”。这背后的黑科技就是Embedding模型

1、工作原理

大家有没有想过,我们平时说的话、写的字,对于计算机来说,根本就是一串乱码。为了让机器理解我们的语言,Embedding模型就出场了。它的核心工作就是:

“把离散的文本数据映射到连续的向量空间中。”

举个栗子吧:

假设我们有两个词——“苹果”和“香蕉”。在Embedding模型的帮助下,这两个词可以被转化成两个向量,如:

  • 苹果:[0.1, 0.8, 0.3, 0.5]
  • 香蕉:[0.2, 0.7, 0.4, 0.5]

看出什么了吗?没错,这两个向量非常相似,因为苹果和香蕉在“食物”这个概念上有相似性!Embedding模型就是通过捕捉文本之间的语义联系,生成具有一定语义距离的向量。

2、优点

  • 语义相似性: 能够捕捉语
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

软件求生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值