大家好,我是你们活力满满、热爱分享技术的31岁小米!最近,我在搞一个超酷的项目,玩转了LangChain4j的向量化与向量库存储,顿时感觉知识点串起来,简直开挂!所以,今天我用讲故事的方式给大家拆解,带你从Embedding模型原理入门,到用LangChain4j配合Qdrant做高效向量检索,通通不放过!
Embedding模型简介
在自然语言处理(NLP)领域,向量化的概念并不新鲜。说白了,就是把文本转换成机器能理解的“数字串”。这背后的黑科技就是Embedding模型。
1、工作原理
大家有没有想过,我们平时说的话、写的字,对于计算机来说,根本就是一串乱码。为了让机器理解我们的语言,Embedding模型就出场了。它的核心工作就是:
“把离散的文本数据映射到连续的向量空间中。”
举个栗子吧:
假设我们有两个词——“苹果”和“香蕉”。在Embedding模型的帮助下,这两个词可以被转化成两个向量,如:
- 苹果:[0.1, 0.8, 0.3, 0.5]
- 香蕉:[0.2, 0.7, 0.4, 0.5]
看出什么了吗?没错,这两个向量非常相似,因为苹果和香蕉在“食物”这个概念上有相似性!Embedding模型就是通过捕捉文本之间的语义联系,生成具有一定语义距离的向量。
2、优点
- 语义相似性: 能够捕捉语