不懂 Python?没关系!Easy RAG 让 Java 开发者也能玩转大模型

大家好,我是小米,一个 31 岁还在写代码的技术分享狂热爱好者!

说来惭愧,我在大模型的风口刮到我脸上的时候还在鼓捣传统 Java 开发,直到今年初,公司要搞一个“AI 助理”小项目,领导一句“用 Java 写个能问文档的助手”,把我瞬间打回现实。

Java 能搞 RAG 吗?能!而且现在更简单了,因为——LangChain4j 推出了 Easy RAG 功能!

今天,我就给大家讲讲我从懵逼小白,到用 Easy RAG 快速搭建起一个能读 PDF 问问题的系统的全过程,真的超级简单,适合所有想快速上手 RAG 的 Java 同学!

RAG 是什么?为什么我突然开始搞它?

先给没接触过的朋友简单科普一下:

RAG(Retrieval-Augmented Generation,检索增强生成) 是一种将外部知识库与大语言模型结合的方式,让模型在生成答案时,能够参考你自己的数据,比如 PDF 文档、数据库、网页等等。

它有两个关键步骤:

  • 检索(Retrieval): 给用户输入找相关文档片段;
  • 生成(Generation): 把这些片段喂给大模型,让它写出更准确的回答。

想象一下,你丢给 ChatGPT 一本 200 页的公司员工手册,然后问它:“试用期考核不合格怎么办?”

如果没有 RAG,它只能瞎猜;但如果你接入了这本手册做知识库,结果就是:

“根据公司员工手册第 3 章第 4 节规定,试用期员工考核不合格,公司有权提前 3 天通知解除劳动合同。”

是不是香爆了?这就是 RAG 的魅力!

为什么我选 LangChain4j,而不是 LangChain(Python 版)?

大家都知道 LangChain 在 Python 圈非常火,它把 RAG 做成了一套很强的链式调用框架,但我 Java 选手总不能天天写 Python 吧

后来我在 GitHub 上发现了 LangChain4

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

软件求生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值