哈喽大家好,我是小米,一个爱分享、爱折腾的技术发烧友,目前在做 AI+应用开发的探索。
最近公司在搭建一个面向客服场景的智能问答系统,选型上我们团队决定用 Java 技术栈,于是我就深挖了一波 LangChain4j —— Java 生态下的 RAG(Retrieval-Augmented Generation)神器!用下来真的太香了!
今天就来和大家系统地聊聊它的主要组件,从最基础的概念,到完整的 RAG 管道构建,带你一步步吃透 LangChain4j。
核心概念:我们在处理什么?
在正式构建流程之前,我们得搞明白 LangChain4j 是如何看待“文档”和“知识”的。它设计了几个很核心的对象,来看一下:
1. Document(文档)
简单理解,Document 是 LangChain4j 世界中的知识载体。
每一个 Document 对象包含两部分:
- 文本内容(通常是从文件、网页等载体中提取的)
- 元数据(Metadata)
2. Metadata(元数据)
Metadata 是用来标记上下文信息的,比如文档的来源、创建时间、所属分类等。
在后续做召回时,元数据可以用来过滤结果、提升召回质量。
3. TextSegment(文本片段)
当一个文档被拆分成多个部分后,每一段就是一个 TextSegment。它本质上是:
- 文本 + 元数据的组合