大家好,我是小米,今年31岁,一名乐于研究各种 AI 工具链的小码农。前段时间,我在做一个基于大模型的智能问答项目,需求是这样的:
“把我们公司过去3年客户FAQ、合同文档、技术支持工单接入进来,用户问什么,系统能秒答。”
嗯哼,乍一听是不是觉得就像 ChatGPT 背后藏着小秘书一样?但真做起来就知道,光靠大模型是没用的,毕竟大模型记不住我们自家的文档!
于是,我找到了 LangChain4J,一个 Java 开发者的福音,它是 LangChain 的 Java 版。结合 RAG(Retrieval Augmented Generation)架构之后,体验那叫一个爽!而且他们的 RAG API 最近更新了一波,加入了四大增强组件,让我这个搞后端的都感叹:
“这不就是问答系统的隐藏技能树嘛!”
今天我就给大家用讲故事的方式分享一下这四大组件是怎么帮助我打造出超强智能问答系统的:
前情提要:什么是RAG?
在正式进入主线剧情前,简单给没接触过 RAG 的小伙伴复习一下。
RAG 的全称是 Retrieval-Augmented Generation,翻译过来就是“检索增强生成”。本质就是——
把用户问题丢给大模型之前,先从你的知识库里找到相关资料,再让大模型结合上下文来回答问题。
流程大致如下:
用户提问 → 检索相关文档 → 组合上下文 → 大模型生成回答
这种方式好处多多:更准确、更私有、更可控、更高效。
LangChain4J 把整个流程组件化,你可以随意组合。而这次的更新,引入了 4 个超级实用的“增强器”:
- 检索增强器(Retrieval Augmentor)
- 查询转换器(Query Transformer)
- 内容检索器(Content Retriever)
- 查询路由器(Query Router)
让我们一探它们的秘密!
组件一:检索增强器(Retrieval Augmentor)
我们故事的主角叫小李,是我项目里的 AI 问答系统。以前的小李,用户一提问,它就直接扔去搜索知识库,但结果总是差强人意。