1.25 推荐系统(矩阵补全)与盲矩阵求解

1.概论:
推荐系统应该有不同种的模型,就我现在所知道的,有以下两种:

第一种就是在监督学习下,预测出p(y=1|x)的概率,推荐出概率最大的物品。其中,x表示物品的特征,y=1表示事件:用户会点击物品。

第二种应该多和电影推荐有关,属于无监督学习:给出电影以及用户的评分矩阵Y(每一行代表一个电影,不同用户对其的评分组成Y的一行;每一列代表一个用户,一个用户对不同电影的评价组成Y的每一列),其中Y的元素有些是空缺的,推荐系统的目标就是补全矩阵Y,然后向用户推荐在自己那一列中比较大的元素。

这篇博客只讨论第二种情况。在这种情况下,问题就是一个盲矩阵的求解问题。

一个标准的盲矩阵求解表示如下:对于\mathbf{Ax=b},仅数据向量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值