机器学习实战需要结合理论和实践,以下是一个清晰的实战步骤指南,涵盖关键工具、常见任务示例以及避坑建议,帮助你快速上手:
一、机器学习实战核心步骤
-
明确问题与数据准备
- 任务类型: 分类、回归、聚类、强化学习?
- 数据来源: Kaggle、UCI、公开API、爬虫或业务数据库。
- 数据格式: 结构化数据(CSV/SQL)或非结构化数据(图片/文本)。
- 工具推荐:
- 数据清洗:
Pandas
、NumPy
- 可视化:
Matplotlib
、Seaborn
、Plotly
- 数据清洗:
-
数据预处理
- 缺失值处理: 删除、均值填充、插值法或模型预测填充。
- 特征工程:
- 类别特征编码:
One-Hot Encoding
、Label Encoding
- 数值特征归一化:
MinMaxScaler
、StandardScaler
- 特征构造: 组合特征(如日期拆分成月/日/周)
- 类别特征编码:
- 数据分割:
train_test_split
划分训练集/测试集(通常 8:2