对于大量的数据,Spark 在内部保存计算的时候,都是用一种叫做弹性分布式数据集(Resilient Distributed Datasets,RDD)的数据结构来保存的,所有的运算以及操作都建立在 RDD 数据结构的基础之上。
在Spark开山之作Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing这篇paper中(以下简称 RDD Paper),Matei等人提出了RDD这种数据结构,文中开头对RDD的定义是:
也就是说RDD设计的核心点为:
RDD提供了一个抽象的数据模型,不必担心底层数据的分布式特性,只需将具体的应用逻辑表达为一系列
spark(7) -- sparkCore(1) -- RDD概念
最新推荐文章于 2024-11-19 23:25:23 发布