Spark(39) -- SparkStreaming -- 流式应用状态

本文介绍了SparkStreaming在处理实时应用业务时如何处理不同类型的流式计算,包括无状态处理(使用transform和foreachRDD函数,如实时ETL)、有状态处理(使用updateStateByKey和mapWithState函数,如实时累加统计)以及窗口统计(用于如订单数统计和NDCG计算等场景)。NDCG作为搜索排序的评价指标,其计算涉及到时间窗口的设定,以避免重复计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

流式应用状态

使用SparkStreaming处理实际实时应用业务时,针对不同业务需求,需要使用不同的函数。SparkStreaming流式计算框架,针对具体业务主要分为三类,使用不同函数进行处理:

  • 业务一:无状态Stateless
    • 使用transform和foreacRDD函数
    • 比如实时增量数据ETL:实时从Kafka Topic中获取数据,经过初步转换操作,存储到ES或HBase表中。
      在这里插入图片描述
  • 业务二:有状态State
    • 双十一大屏幕所有实时累加统计数字(比如销售额和销售量等),比如销售额、网站PV、UV等等;
    • 函数:updateStateByKey、mapWithState
      在这里插入图片描述
  • 业务三:窗口统计
    • 每隔多久时间统计最近一段时间内数据,比如
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

erainm

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值