苹果发布 ReALM——端侧大语言模型再突破!显著提升 Siri 智能程度

摘要:

苹果近日发布了端侧大语言模型 ReALM,该模型可以显著提升 Siri 的智能程度,并且在多项测试中表现优于 OpenAI 的知名语言模型 GPT-4。ReALM 在理解用户查询、识别实体、语义理解等方面都取得了突破性进展,有望为用户带来更加自然和高效的人机交互体验。

引言:

在自然语言处理领域,指代消解(Coreference Resolution)是一项重要任务,旨在确定代词(如"他"、"她"、"它"等)或其他指示性词语(如"这个"、"那个"等)所指代的实体或对象。准确理解指代对于实现机器阅读理解和自然交互至关重要。在人与人之间的交流中,代词的使用通常能够被准确理解。然而,当我们与机器交互时,代词的理解往往会造成歧义,影响用户体验。例如,当我们问 Siri “它在哪里?”时,Siri 可能无法理解“它”指的是什么,从而导致错误的理解和回复。

近年来,大型语言模型 (LLM) 的发展为指代消解任务带来了新的机遇。LLM 可以通过学习大量文本数据,掌握语言的语义和规则,从而更好地理解代词的含义。然而,现有的 LLM 模型大多部署在服务器端,无法满足移动设备对实时性和低功耗的要求。此外,传统的图像识别模型通常使用真实世界的图片进行训练,而手机屏幕上的图像与真实世界的图片分布差异很大,并且,对于手机屏幕图像,很多信息在底层已经获得,如文本内容、元素位置等。因此,使用传统图像识别模型会造成信息冗余,降低识别效率。导致识别效果不佳。

ReALM 模型创新:

苹果的 ReALM 模型针对上述问题进行了创新性改进。首先,ReALM 采用端侧部署模式,可以有效降低功耗和延迟,提升响应速度。其次,ReALM 针对手机屏幕上的图像特点,设计了新的编码算法,可以有效提取图像中的关键信息,提升识别精度。

(1)在数据准备方面,苹果准备了三类专用数据:

会话数据:类似于人与人之间的对话。例如,你问朋友:"你知道这家餐厅的电话号码吗?" 朋友回答:"是123-4567。" 这段对话包含了两个实体:餐厅和电话号码。

合成数据:人工制造的数据。例如,使用模板生成一个餐厅列表,其中包含餐厅名称、地址、电话号码等信息。

屏幕数据:手机屏幕上的信息。例如,从网页上提取电话号码、电子邮件地址等信息。

(2)在模型选择方面,苹果使用了 FLAN-T5 模型:

没有进行大量的超参数搜索,而是采用默认的微调参数。这种简洁的方法不仅降低了计算成本,而且证明了 ReALM 的有效性。

ReALM 的优势:

更强的理解能力:ReALM 可以有效地理解用户查询并识别相关实体,包括对话中的实体、屏幕上的实体和背景实体。

更优的性能:在对话引用和屏幕引用方面,ReALM 的性能都优于现有的方法,包括非 LLM 模型和 GPT-3.5/GPT-4 等大型语言模型。

更广的泛化能力:在未见过的领域 (例如闹钟),ReALM 的性能略好于 GPT-4。

更强的领域适应能力:由于针对用户查询进行微调,ReALM 能够理解更多领域特定的问题,例如智能家居设备相关的查询。

更小的模型尺寸和更快的运行速度:尽管参数数量少得多,ReALM 的性能接近最先进的 LLM (GPT-4),并且运行速度更快。

ReALM 的应用前景:

ReALM 的发布标志着苹果在端侧大语言模型领域取得了重大突破,有望为 Siri 等智能助手带来质的提升。未来,ReALM 可以应用于更广泛的场景,例如:

·智能家居控制

·信息检索

·机器翻译

·文本生成

·人机交互

结语:

苹果 ReALM 的发布,为端侧大语言模型的发展开辟了新的道路。相信随着技术的不断进步,人机交互将会更加自然和高效,智能助手也将更加人性化,为用户带来更加便捷和智能的生活体验。

### 关于定性函数扫频分析的实现方法 #### 1. 阻抗建模扫频基础 阻抗建模是一种常用的电力电子系统定性分析手段。通过构建系统的输入输出模型,可以得到系统的传递函数表达式[^2]。对于光伏并网逆变器而言,其定性不仅取决于自身的动态特性,还受到电网阻抗和其他外部扰动的影响。因此,在进行定性分析时,通常采用扫频法来评估系统的频率响应。 扫频分析的核心在于获取系统的开环或闭环传递函数在不同频率下的幅值和相角变化情况。这种方法能够帮助工程师判断系统的增益裕度和相位裕度是否满足设计需求[^1]。 --- #### 2. Simulink中的扫频实现流程 Simulink作为MATLAB的一部分,提供了一种高效的仿真环境用于执行阻抗扫描和定性分析。以下是具体的技术细节: - **建立系统模型** 使用Simulink搭建目标系统的动态模型,包括锁相环(PLL)、电流控制器以及功率级电路等模块。这些模块共同决定了整个系统的动态行为。 - **注入测试信号** 在待测节点处加入一个小幅度正弦波激励源,该激励源会随着时间逐渐改变其频率范围。例如可以从0 Hz到几千赫兹逐步增加步长为一定数值的小增量[^3]。 - **采集响应数据** 利用Scope或者To Workspace block记录下被控对象对该特定频率范围内每一点所对应的态输出电压/电流值及其瞬态过渡过程信息[^3]。 - **数据分析阶段** 将上述获得的结果导入至MATLAB workspace之后,运用FFT算法转换成频域表示形式;接着绘制Bode图展示各次谐振峰位置及相应品质因数Q值大小关系图表以便进一步探讨可能存在的潜在不定现象[^3]。 ```matlab % MATLAB代码示例:基于FFT的频谱分析 function freqResponse = analyzeFrequency(data, fs) N = length(data); % 数据长度 Y = fft(data); % 计算快速傅里叶变换 (FFT) P2 = abs(Y/N); % 双边频谱密度 P1 = P2(1:N/2+1); P1(2:end-1) = 2*P1(2:end-1); f = fs*(0:(N/2))/N; % 单边频率向量 figure; plot(f,P1,'k','LineWidth',1.5); title('单边幅度谱'); xlabel('f (Hz)'); ylabel('|P1(f)|'); end ``` --- #### 3. 基于PLECS的扩展应用 除了纯软件模拟外,还可以借助硬件描述语言工具链如PLECS完成更贴近实际工况条件下的实验验证工作。PLECS允许用户定义复杂的电气网络拓扑结构并通过图形化界面操作简化配置步骤的同时保留高度灵活性去调整各个元件属性设置直至达到理想效果为止。 当涉及到高频部分或者复杂电磁兼容性考量的时候,则推荐结合实物原型机开展联合调试活动从而确保理论推演结论能够在真实世界场景当中得以有效落地实施。 --- #### 4. 定量化参数影响的研究方向 针对某些难以直接观测的因素比如温度漂移效应或者是制造工艺偏差所带来的不确定性问题,则可引入灵敏度分析框架予以辅助解决。通过对关键变量求取偏微分方程组解的形式揭示它们之间相互作用规律进而找出最敏感的那个维度加以重点管控措施落实到位即可显著改善整体性能指标表现水平[^2]。 --- ### 结论 综上所述,无论是利用纯粹数学建模仿真还是依托先进测量仪器设备配合专业软件平台协同作业都能够很好地达成预期目的即全面掌握目标装置内部运行机制原理并且据此制定合理优化改进方案最终促成产品竞争力持续增强的良好局面形成发展态势良好前景广阔未来值得期待! ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

灿烂李

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值